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Inference in Stochastic Processes 

L V. Basawa 

Large sample properties of estimators and test statistics based on observations 
from stochastic processes are reviewed. The local asymptotic normality (LAN) is 
used as a unifying framework. Optimum estimating functions, adaptive estima- 
tion for semiparametric models and Bayesian methods are also discussed briefly. 
Several examples from stochastic processes are presented to illustrate the theory. 

1. Introduction 

This paper reviews large sample properties of estimators and test statistics based 
on observations from discrete time stochastic processes. Even though similar 
results can be obtained for continuous time processes, we limit ourselves to the 
discrete time for the ease of presentation. The local asymptotic normality (and 
mixed normality) is used to unify diverse asymptotic results and efficiency 
properties. Billingsley (1961), Basawa and Prakasa Rao (1980a) and Basawa and 
Scott (1983) may be consulted for background material for inference in stochastic 
processes. LeCam (1986) and LeCam and Yang (1990) discuss local asymptotic 
normality and its applications in a general setting. 

If the likelihood function is not known, one can use the theory of optimal 
estimating functions instead of the likelihood based methods. See Godambe 
(1991) and Heyde (1997) for the method of estimating functions and its appli- 
cations. 

Section 2 is concerned with likelihood based methods. These include the local 
asymptotic normality, asymptotic efficiency of the maximum likelihood estima- 
tor, efficient tests of both simple and composite hypotheses, and extensions to 
local asymptotic mixed normality. Optimal estimating functions are introduced in 
Section 3. Semiparametric models and adaptive estimation are discussed in Sec- 
tion 4. Section 5 reviews Bayes and empirical Bayes methods. Specific applica- 
tions are discussed in Section 6. 

See also Basawa and Prakasa Rao (1980b) and Basawa (1983, 1990) for pre- 
vious reviews on the topic. 
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2. Likelihood methods 

2.1. The basic framework 

Let {Xt}, t = 0 , -4 -1 ,±2 , . . . ,  denote a discrete time stochastic process defined 
on a probabil i ty space (Z, Y ,  Po) where ;~ is the sample space not  depending on 
0, ~ ,  the corresponding Borel a-field and Po a probabil i ty measure indexed by 
a (k x 1) vector parameter  0 taking values in an open set ~2 c Nk. Suppose 
X(n) = (X1,...,Xn) is a vector of  n observations defined on the space 
(Xn, f n ,  Pn,o). Let pn (x(n); 0) denote the probabil i ty density corresponding to Pn,o 
defined with respect to an appropr ia te  measure #,. It is assumed that the prob-  
ability measures {Pn,o, 0 • f2} are restrictions of Po on ~ n ,  and they are mutually 
absolutely continuous.  Consider  the log-likelihood ratio of  0 to 00, 

An(O, 00) = log{pn(X(n); O)/pn(X(n); 00)} , (2.1) 

where 00 is a fixed parameter  value and 0 ranges in f2. The asymptot ic  properties 
of  l ikelihood based estimators and tests are related crucially to the limiting 
behaviour  of  A,(O, 00) for  values of  0 close to 00. Define a ne ighborhood Nn(O0) 
of  00 by Nn(Oo) = {0 : ICed(00)(0 - 00)l _< 6}, 6 > 0, where ]al, for  any column 
vector a, denotes the vector norm (aTa) 1/2, and C,(00) is a (k x k) positive definite 
symmetric matr ix (non-random) such that  tr(C~(Oo)Cn(Oo)} ---+ ~ as n ~ ~ .  We 
shall first consider a quadrat ic  approximat ion  for  An(O, 00) for  0 • Nn(Oo). See the 
end of  Section 2.3 for  the various choices of  Cn(0o). 

2.2. A quadratic approximation for the log-likelihood ratio 

Suppose that  for  any 0 • Nn(Oo), there exists a r andom (k x 1) vector Sn(00), and 
a r andom (k x k) (almost surely) positive definite symmetric matr ix Fn(00) such 
that  under  P00-probability, 

An(O, 00) = (0 - 00)Tsn(00) -- ½(0 -- 00)TFn(00)(0 -- 00) + Op(1) , (2.2) 

where Op(1) denotes terms that  converge to zero as n -+ ~ in P00-probability. The 
quadrat ic  approximat ion  in (2.2) will be used repeatedly in what  follows. Denote  

Qn(0, 00) = (0 - 00)Tsn(00) -- ½(0 -- 00)TFn(00)(0 -- 00) • (2.3) 

Taking vector derivatives with respect to 0, we have 

Q'n(0, 00) = Sn(00) - r , (00 ) (0  - 00) , (2.4) 

and 

Q2(0, 00) = -Fn(00)  . (2.5) 

Consequently,  the value o f  0 that  maximizes Qn(0, 00) is given by 

00 = 0o + F~ -1 (0o)Sn(0o) . (2.6) 
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Substituting (2.6) in (2.3) we have 

Qn(00, 00) 1 T -1 = gS, (00)F, (00)Sn(00) . (2.7) 

The maximizer 00 and the maximum value Qn(00,00) of Q~(0,00) play an 
important role in obtaining efficient estimators and efficient tests respectively. 

It may be noted that in most of the applications the approximation in (2.2) can 
be verified via the Taylor expansion with 

Sn(0) d logp,(X(n); 0) - d  2 = dO and Fn(0) = logp,(X(n); 0) (2.8) 
' dO dO T ' 

the score vector and the sample Fisher information matrix, respectively. From 
now on, unless otherwise stated, S,(0) and Fn(0) are chosen as in (2.8). See 
Basawa and Koul (1988) for further results on quadratic approximation in a more 
general setting. 

2.3. The Local Asymptotic Normality (LAN) 

Suppose first that the quadratic approximation for An(O, Oo) in (2.2) is valid. 
Further, assume the following conditions, (2.9) and (2.10), are satisfied. There 
exists a positive definite symmetric non-random matrix F(00) such that 

and 

Cn 1 (00)rn (00)Cn 1(00) = r(00)  Jr op(l) , (2.9) 

d 
Cn 1 (00)S n (00) -------+ Nk(O , F(00) ) (2.10) 

both under P00-probability. The family of probability measures {Pn,o} is said to 
satisfy the local asymptotic normality (LAN) property in Nn (00) provided (2.2), 
(2.9) and (2.10) are satisfied. Under the LAN assumption we have, with 
0n = 00 + Cnl(00)h, where h is a (k x 1) vector of real numbers, 

An(On, 00) d> N(_½hTF(00)h, hTF(00)h) , (2.11) 

as n -+ oc, under P0o-probability. 
The LAN property provides a powerful tool in obtaining efficient estimators 

and tests as will be seen in the next two subsections. The normalizing sequence of 
matrices {Cn (00)} can be chosen in a number of ways. More common choices are 
as follows: 

(i) Take Cn(00) --- nl/2I, where I is the identity matrix. This choice is appro- 
priate typically when the process {Xt} is stationary and ergodic. In particular, 
when {Xt} is a sequence of independent and identically distributed random 
variables, the above choice leads to the classical large sample theory. 
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(ii) For nonstationary processes, it is often convenient to take 

Cn(Oo)= [diag{Eoo(-~21npn.~ .. (-~21npn~ l/2 

Typically, in problems related to regression models the above choice is quite 
common in the literature. 

(iii) A more general choice for Cn(00) is Cn(00) = (EooF,(Oo)) 1/2. With this 
choice, for ergodic type models typically, F(00) in (2.9) to (2.11) is replaced by the 
identity matrix. 

2.4. Efficient estimation 
A sequence of estimators {Tn} of 0 is said to be regular asymptotically normal if 

- ---+Nk(0, Vr(00)), under P~,0°-probability , (2.12) C.(00)(r. 0n) d 

where 0n = 00 + C~-l(00)h, and VT(00) is a positive definite matrix. The LAN 
property enables one to construct efficient estimators in the class of regular as- 
ymptotically normal estimators satisfying (2.12). Several estimators, such as 
moment, least squares and conditional least squares estimators satisfy (2.12). It 
can be shown (see, for instance, Hall and Mathiason (1990)) that when the LAN 
property is satisfied, then for any Tn satisfying (2.12), we have 

Vr(00) _> F-l(00) , (2.13) 

in the sense that the difference is a non-negative definite matrix. The inequality in 
(2.13) is the asymptotic analogue of the usual Cram~r-Rao inequality for the 
variance of an unbiased estimator based on a finite sample. Note that the regu- 
larity assumption in (2.12) requires the asymptotic normality of Tn under pn,o°_ 
probability. The verification of (2.12) can be simplified as follows. Suppose first 
that {Tn} satisfies 

where Z~ 

( V r  6~,s ) ) under P00-probability 
~T,S ~ 

(2.14) 

= Cn(00)(Tn - 00) and An = C21(00)S~(00). It can then be shown (see 
Hall and Mathiason (1990)) that, under LAN, any Tn satisfying (2.14) satisfies 
(2.12) if and only if 6T,S = I, the (k x k) identity matrix. Consequently, in order to 
verify (2.12) it suffices to show that 

;)), under 0o  obabil  y 
Note that under appropriate regularity conditions regarding differentiation under 
the integral sign, the requirement 6r,s = I implies that T, is asymptotically 
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unbiased for 0. Suppose that Tn satisfies (2.15). Then (2.13) follows readily. To see 
this consider Yn = Zn - F-1An. From (2.15) it follows that, under Poo-probability, 

d 
Yn--~Nk(0, V r - F  -1) . (2.16) 

Since Vr - F -1 is a covariance matrix, the result in (2.13) follows. 
A regular estimator is asymptotically efficient if the equality in (2.13) holds. We 

now consider the problem of constructing efficient estimators which attain the 
equality in (2.13). First, consider the following assumption on the score function 
S~(0). Suppose 

Sn(0)  = Sn(0o)  - Cn(Oo)FCn(Oo)(O - 00) + Op(1), u n d e r  P 0 o - p r o b a b i l i t y ,  

(2.17) 

uniformly in 0 C N~(Oo). The requirement in (2.17) can usually be verified by a 
Taylor expansion of Sn(0) at 0o, and a strengthened version of (2.9), viz., 

cnl(Oo)Fn(O)Cnl(Oo) = F (00 )  + op(1) ,  under P0o-probability , 

(2.18) 

We have 

Cn(0o)(0n - 0o) = Cn(00)(0o - 00) + Cn(0o)F2a (0o)Sn(00), by (2.19) 

= c n ( o o ) ( 0 o  - o 0 )  +c.(Oo)r21(0o) 
× {Sn(0o) - Cn(00)FCn(0o)(0o - 0o) +Op(1)}, by (2.17) 

= F l(o0)Cnl(Oo)Sn(O0) + O p ( 1 )  , (2.22) 

using (2.18). The result in (2.21) then finally follows from (2.22) and (2.10). It can 
further be shown (see, for instance, Hall and Mathiason (1990)) that under LAN, 
0n satisfies (2.12) with Vr (00 )=  F 1(00). Consequently, 0n given by (2.19) is 
asymptotically efficient. 

Note that 0, is the usual one-step solution of the likelihood equation 
Sn (0) = 0, and it requires a preliminary estimator. Typically, moment and least 
squares estimators can be chosen as preliminary estimators. 

uniformly in 0 E Nn(Oo). Now consider the estimator 0n defined by 

0n = 00 + F21(00)S,(00) , (2.19) 

where 00 is any preliminary estimator of 0 such that 

C,(00)(00 - 00) = @(1), under P00-probability , (2.20) 

where Op(1) denotes terms bounded in probability. Note that (2.19) is obtained 
from (2.6) by replacing 00 by 00. Under LAN, and (2.17), one can verify that 0n is 
asymptotically efficient. First, we shall show that 

Cn(0o)(0n - 0o) d N~(0, F -1(0o)), under P0o-probability . (2.21) 
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2.5. Efficient tests: Simple hypotheses 

First, consider the problem of  testing a simple hypothesis H : 0 = 00, against a 
simple alternative K : 0 = 01. By the Neyman-Pea r son  lemma, the most  powerful  
test is given by 

1, An(01,0o) >_ kn 
~n = O, An(Ol ,0o)  < kn ' 

(2.23) 

where the constant  kn is chosen so that  EH4n = en, 0 < •n < 1. Here q~, takes the 
value 1 for the rejection of  H and the value 0 for the acceptance. Let  qS~ be any 
other  test function such that  EH~b,] = ~n. It then follows by the Neyman  Pearson 
lemma that  

re,,(01) > re;(01) , (2.24) 

where f~(01) denotes the power of  a test ~b at 01, i.e. fe(01) = ExO. A test ~b, is 
said to be consistent for  testing H against K, if re.(01) -+ 1 as n ~ ec. Several 
reasonable tests satisfy the consistency requirement.  In order  to discriminate 
between consistent tests one may look at the limiting power at a sequence of  
alternatives K , : O  = 0n, 0n = 00 + Cn(00)h, ra ther  than at a fixed alternative 
0 = 01. F r o m  (2.24), with 01 replaced by 0n, we have 

lira sup{f  e; (0n)} < lira fie, (0n) , (2.25) 

where the right hand limit in (2.25) can be evaluated under  LAN.  Note  that, 
under  LAN,  the limit distribution of  A,(On, 00) under  H is given by (2.11), viz., 

An(On, 00) d N(_½z2 ' .[.2) , (2.26) 

where "C 2 = h T F ( 0 0 ) ] l .  Letting ~n --+ c~, we find by (2.26) that kn in (2.23) converges 
to k = "CZl_~ - "c2/2, where ~b(Zl_~) = 1 - c~, and ~b(x) denotes the distribution 
function of  a s tandard normal  r andom variable. It can be shown (see, for  
instance, Basawa and Scott  (1983)), under  LAN,  that  

We have 

An(On, Oo) ~ N @ 2 / 2 , ' 2 ) ,  under  Kn . (2.27) 

f+.(o.) = P.,oo(A. >_ k.) 

1 - -  ~ ( Z  1 c~ - -  ~C) . ( 2 . 2 8 )  

The result in (2.28) follows f rom (2.27), and the fact that  k, ~ zzl_~ - ~2/2. We 
finally obtain (under LAN)  the following inequality for  the limiting power  of  any 
size-c~, test qS~, (c~, --~ c~), 

lira sup{f¢;(O,)} _< a - q~(zl-~ - z) . (2.29) 
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Any test qS] for which the equality in (2.29) is attained is an asymptotically 
efficient test. Obviously, the Neyman Pearson test statistic An(O~, 0o) is asymp- 
totically efficient in the above sense. 

For a general alternative hypothesis K : 0 ~ 0o, it is desirable to find a test 
which does not depend on the specific direction h in 0n. One may consider the 
score statistic 2Q~(0o, 0o) defined by (2.7), i.e., 

We have 

2Q,(0o, 0o) = S~(0o)F~ -1 (0o)S~(0o) . 

T (oo)rn(Oo)C;1 (Oo))lAd(do) sn (Oo)rn (0o)S.(0o) = 
d 

x2(k), under H , (2.30) 

where An(0o) = Cn 1 (0o)Sn(0o). The result in (2.30) follows readily from (2.9) and 
(2.10). Under LAN, it can be shown that 

An(0o) ~ d  Nk(F(0o)h,r(0o)), under Po -probability . (2.31) 

Also, under LAN, we have, from (2.9), 

C,T l(0o)Fn(0o)C~ 1(0o) d> F(0o), under Po -probability . (2.32) 

It follows from (2.31) and (2.32) that, under Pod-probability, 

T 1 ~ z2(k, 2) , (2.33) sn (Oo)r. (Oo)S.(Oo) 

where x2(k, 2) denotes a non-central chi-square random variable with k degrees of 
freedom and non-centrality parameter 2 = hTF(0o)h. Consider the test function 

1, 2Qn(0o,0o) > X2 ~(k) 
~ = 0, 2Q,(0o,0o) < xz_~(k) 

(2.34) 

We can show that ~ in (2.34) is asymptotically efficient in a certain class of tests. 
Let Tn be any estimator of 0 satisfying (2.12). Consider the test function 

~;~ = { 1, (Tn - 0o)TCn(0o)V~(0o)Co(0o)(To - 0o) _> Z~_~(k) 
0, (r,  - 0o)TC,(0o)V~1(0o)Cn(0o)(T, -- 0o) < X~_~(k) 

(2.35) 

We have limEHq~, = limELrq~ = ~. We shall now compare the limiting powers of 
q~, and q~]. From (2.33) and (2.34), we have, 

limEo,,q~, = P(z2(k, 2) >_ zz_~(k)) . (2.36) 

From (2.12), we have, under Po -probability, 

Cn(0o)(Tn - 0o) -d-~Nk(h, VT(00)) • (2.37) 
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Consequently, 

(Tn - Oo)ZCn(Oo)V71(Oo)Cn(Oo)(Tn - 0o) d> z2(k ' 2*) , (2.38) 

where 2* = hTVT 1 (0o)h. Therefore, 

llmEo°~b, --- P(z2(k, 2*) _> Z12_~(k)) . (2.39) 

From (2.13), we have 2 _> 2*, and hence by (2.36) and (2.39) we have 

limE0oq~n > limE0,~* . (2.40) 

Any test qS~* is said to be asymptotically efficient if its limiting power attains the 
upper bound in (2.40). We have thus shown that the score statistic 2Qn(0o , 0o) is 
asymptotically efficient in the above sense. 

The score test is not the only test which is efficient according to the criterion 
based on (2.40). The usual likelihood ratio statistic and the so-called Wald sta- 
tistic are also asymptotically efficient• The likelihood ratio statistic is given by 
2An(On, 0o), where we can use the one-step maximum likelihood estimator 0n 
defined by (2.19). We have, from (2.2), 

2An(0n, 0o) = 2Qn(0n, 0o) + Op(1), under P0o-probability . (2.41) 

Under LAN, (2.41) remains valid under P0 -probability also. We will show that 
Qn(0n, 0o) and Q~(0o, 0o) have the same limit distributions under both Poo- and 
P0 -probabilities. We have 

Qn(0n, 0o) = (On - o 0 ) T S n ( O 0 )  - -  l ( O n  - -  o 0 ) T F n ( O o ) ( O n  - -  0 0 )  

= A[(0o)F-I(0o)An(0o) _ ~ A n r l  T -1(00) 

× (c ;  l(oo)rn(0o)c21 (0o))r -l(oo)A (oo) 
+Op(1), by (2.22) 
1 T -1 Op(1) = (Oo)rn (0o)Sn(0o) + 

= Qn(0o,0o) + op(1), under Poo , (2.42) 

by (2.7). Under LAN, the above result also holds under Po-probability via 
contiguity (see Hall and Mathiason (1990)). Consequently, the likelihood ratio 
statistic 2An(0n, 0o) has the same limit distributions as that of 2Qn(0o, 0o) under 
both Poo- and P0 -probabilities, and hence it is asymptotically efficient. 

Finally, the Wald statistic is defined by (0n - 0o)TFn (0o)(0n -- 0o). It is seen that 

(0n - 00)TFn(00)(0n - 0o) = A[(0o)F 1(0o)(C;1 (0o)Fn(0o)C~ 1(0o)) 

× F-l(0o)An(0o) + op(1), by (2.22) 
T - 1  - s .  (oo)rn (Oo)Sn(Oo) + op(1) 

= 2Qn(0o, 0o) + Op(1) . (2.43) 
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Again, the above result is valid under both Poo and P0:probabilities. The Wald 
statistic is therefore asymptotically efficient. 

2.6. Efficient tests: Composite hypotheses 

Let 0 = ( ~ T  ~T)T where ~ and p are (p x 1) and ( k - p )  x 1 vectors, respectively. 
Suppose c~ is the parameter of interest and fi represents a nuisance parameter. 
Consider the problem of testing a composite hypothesis H : e = e0, when fi is 
unknown. We shall show that, under LAN, the score test, the Wald test and the 
likelihood ratio test are all asymptotically efficient in the sense of maximizing 

h T limiting power at the local alternatives. Partition h = ( ~, h~) T where ha and h~ 
are of the order (p x 1) and (k - p )  x 1 respectively. Our efficiency criterion will 
be based on the limiting power at the local alternatives Kn : e = c~n, and fl =- fin, 
where an = ~o + Cn -1 (C~o, fi)h~, and fin = fi + C~,~(~0, fl)h/~. Here Cn(0) is taken as a 
diagional matrix, Cn# is the (p x p) diagonal matrix containing the first p diag- 
onal elements and Cn: is the ( k -  p) x ( k -  p) diagonal matrix containing the 
remaining ( k -  p) diagonal elements of Cn(0). Note that fi is unspecified in both 
e, and fin. Now, partition Sn (0) and Fn (0) as 

/ 
s . ( 0 )  = r n ( 0 )  = T 

\ s = : ( 0 )  ' t . r n , = , ( 0 )  ' 

where S=,=(0) is of order (p x 1), Fn,==(0) is a (p x p) matrix, etc. In analogy with 
(2.19) we define a one-step likelihood equation estimator for fl under the 
restriction H : e = e0, as 

/}on = rio + F~/~(C~o,/~o)Sn,/~(C~o, rio) , (2.44) 

where rio is any preliminary estimator of fl such that 

C~,/~(C~o, fi)(/~o - fl) = op(1) , 

and F~/~ denotes the lower right hand (k - p )  x ( k - p )  matrix in F~ 1, i.e., 

T - 1  1 
= ( r . , e e  - rn, ern, Y°, e) 

It follows, as a special case of (2.21), that under H, 

d 
C,,/~(C~o, fi)(rio, - fi) ----+ N(k_p)(0, F/~/~ (C~o, fl)) • (2.45) 

Let 0~,H geT ~T ~T = ~ 0, e0,n: - The likelihood ratio statistic for testing the composite hy- 
pothesis H : ~ = ~0, is given by 

r (1) = 2An(On, On,H) , (2.46) 

where 0, = (:~ T ~T)T is given by (2.19). The Wald and the score statistics are given \ n ~ 1"tl ,/ 

respectively by 
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T, (2) = (c2, - ~0)Tc,,~(0,){F~(0~)} 'Cn,~(0,)(c2~ - c~0) , (2.47) 

and 

T ( 3 )  T ^ - 1  ^ 0 ~  ^ - 1  ^ ^ = S,#(0,,~v)C, (0,,,/)F (0~,,v)Cn,~(0,,ic)S~,~(0,,,q) . (2.48) 

The limit distributions of  the above three statistics T (i), i = 1,2, 3, can be shown 
to be identical under  both H and K,. We have, for i = 1,2, 3, 

T(i ) d { )~2(p), under H (2.49) 
> Z2(p, 2), under K~ ' 

where 2 = h[ (F~, ) ) - lh~ ,  with OH = (c~0,fi). Consider the class of  asymptotically 
similar size-7 tests of  H, viz., the class of  test functions qS~ such that 

limEH(~b,) = 7, for all/~ . 

Now, let U~ be any estimator of  c~ such that, under  K~, 

d 
C~,~(c~0,/)0~) (U, - ~0) ---+Np(h~, Bu(c~0, fi)) , (2.50) 

where B~ is a positive definite matrix. Note that  (2.50) is an adaptat ion of  the 
regularity requirement in (2.12). We then have, as in (2.13), 

Be(e0 ,  fl) _> F~(c~0, fl0) • (2.51) 

Consider a test statistic T~ based on U~, defined by 

Tn T -1 = V~Bu (e0,/}0~)V~ , (2.52) 

where 

It follows from (2.50) that, under K~, 

d 2 ---+ z (k, 2 * ) ,  (2.53) 

where 2* T -1 = h~B v (c~0, fi)h~. F rom (2.51) it follows that  

2* _< 2 , (2.54) 

where 2 is the non-centrality parameter appearing in (2.49). Now, define a test 
function qS,, 

1 if T, > Z~_~(P) 
q ~ =  0 if T~<Z2_,(p) 

(2.55) 

It is easily verified that  ~b, is asymptotically similar size-co From (2.54) it follows 
that  the Wald statistic T~ (2) is asymptotically efficient in the class of  tests given by 
(2.55). Since the likelihood ratio and the score statistics can both be expressed as 
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equal to T (2) plus a Op(1) term under both H and K,, it follows that these two tests 
are also asymptotically efficient in the same class. 

2.7. Neyman and Durbin statistics 

Consider the problem of testing discussed in Section 2.6. In addition to the three 
statistics presented in the previous section, the following two statistics are also 
efficient. The Neyman C(a)-statistic is defined by 

T~ (4) = yTF~(O,,u)Y, , (2.56) 

where 

Yn C n l c ~ ( O n , H ) S n , ~ ( O n , m )  ~ - 1  ^ - 1  ^ ^ = - , 

which represents a regression of S~,~ on Sn.~. 
Since Sn,/~(0~,H) = Op(1), it follows that 2~ (4) is asymptotically equivalent to the 

score statistic T~ (3), under both H and K,. 
In order to introduce the Durbin statistic, let/~0~ be the estimator defined in 

(2.44), and let ~0~ be the estimator defined by 

~0~ = 50 + r~(50,/}0,)Sn,~(50,/~0,) , (2.57) 

where 50 is any preliminary estimator of ~ such that C,,~ (0n) (50 - ~0) = Op ( 1 ). In 
other words, fl0, is a one-step solution of the equation S,,p(e0, fi) = 0 for fi, and 
~0~ is a one-step solution of the equation S~,~(~,/~0, ) = 0 for e. The Durbin 
statistic for testing H : a = e0 is then defined by 

( 4 0 °  - - -  . ( 2 . 5 5 )  

It is easily verified that T~ (5) is asymptotically equivalent to T,, (2) under H as well as 
under K,. Consequently, all the five statistics ir~ (i), i = 1 , . . . ,  5, discussed in Sec- 
tions (2.6) and (2.7) are asymptotically efficient. The choice among these statistics 
may depend on the simplicity in deriving the statistics in any particular problem. 

Note that T~ (1) depends on both the restricted and the unrestricted (maximum) 
likelihood estimators 0~,H and 0,. The Wald statistic T (2) depends only on the 
unrestricted estimator 0~. The score statistic T~ (3) and the Neyman C(a)-statistic 
T~ (4) both need the restricted estimator 0~,H. The Durbin statistic requires the two 
restricted estimators ¢20, and/~0, obtained in a convenient successive substitution. 
Even though asymptotically these five statistics are asymptotically equivalent, for 
small or moderate sample sizes their performance may vary significantly. 

2.8. Extension to non-ergodic models 

For some models in stochastic processes, it turns out that the limiting Fisher 
information F(0) in (2.9) is a non-degenerate random matrix. The limit distri- 
bution of the maximum likelihood estimator given in (2.21) will then be a mixture 
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of normals rather than a normal. Typically, such models belong to the local 
asymptotic mixed normal (LAMN) family rather than the LAN family. See 
Basawa and Scott (1983) for the theory and applications of the L A M N  family. 
Stochastic models belonging to this class are also referred to as non-ergodic 
models. See Basawa (1981 a, b) and Basawa and Brockwell (1984) for conditional 
inference for non-ergodic models. 

3. Optimal estimating functions 

In many cases, the density p,(x(n); O) is either not known, or it may be unwieldy. 
Consider a class of estimating functions defined by 

n 

gn(O) = ~ W t ( O ) ( X t  - m,(O)) , (3.1) 
t - I  

where g,(O) and Wt(O) are (p x 1) random vectors such that g,(O) E ~-, and 
W,(0) E ~-t-1, where ~ m  = °'(Xm,Xm-1,.", ). If mr(O) = E(Xtl2t_l),  {g,(0), Y , }  
is a zero-mean martingale. Let o-2(0) = Var(Xtl~t_~). Godambe (1985) has shown 
that an optimum choice of Wt(0) is 

W°(0) = (dmt(O)~a~-2(O) (3.2) 
\ d0 /t ' 

where the optimality criterion seeks Wt(0) which maximizes (in the partial order 
of non-negative definite matrices) the Godambe information matrix 

I~.(O) = ( E ( ~ o ) ) ( E ( g , g ~ ) ) - I ( E ( ~ o ) )  T (3.3) 

Thus, if 

n 

g~(0) =~(Xt -mt (O))W~(O) ,  
t = l  

we have that (Io,0 ' - Ig°)  is non-negative definite for all g. of the form (3.1) and 
satisfying some regularity conditions. The optimal estimating function gO is also 
referred to as a quasi-score function. See, for instance, Heyde (1997). The quasi- 
score estimator Oq is obtained as a solution of the equation g° (0 )=  0. Under 
appropriate regularity conditions (see Heyde (1997)) one can show that 

W~/2(O)(Oq - O) J~  N(O, I) , (3.4) 

where 

Wn(0) : ~ (dmt(0)~ (dmt(O)~ wa~_2(0) " 
,=1 \  dO J \  dO J 

(3.5) 
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If the estimating function g~ (0) is not restricted to be of the "linear" form in (3.1), 
it is well known that the optimum g,(0) which maximizes Ig,(0) in (3.3) in the 
unrestricted class of estimating functions is given by the likelihood score function 
S~(0). See Godambe (1960). 

The theory and applications of quasi-score estimators, confidence sets and test 
statistics are discussed in Godambe (1991) and Heyde (1997). See also Basawa 
(1985, 1991) and Basawa et al. (1985) for tests based on estimating functions. 

4. Semiparametric models and adaptive estimation 

Consider the model 

X~ = mr(O) + a,(O)~t (4.1) 

where {ct} is a sequence of independent and identically distributed random errors 
with E(et) = 0 and Var(et) = a F, mr(O) = E(Xt[~t-1), and a~(0) = Var(Xtl~t_l). 
Suppose 0 is a (p x 1) vector of parameters. If the density f~(.) of {ct} is known, 
one can apply the likelihood methods for inference regarding 0. On the other- 
hand, iffc(.) is unknown, and mr(O) and a2(0) are modeled as known functions 
of 0, measurable with respect to ~,~t 1, the model in (4.1) is an example of a 
semi-parametric model. 

Let 0n be a preliminary estimator of 0. For instance, 0n may be the least- 
squares estimator obtained by minimizing 

c2(0 ) = (Xt - mr(O)) 2 (4.2) 

Denote Yt = et(On). Let f~(y) denote a kernel density estimator, e.g., 

1 n 
fn(y) =-nt~=lb n l K ( y ~ )  , (4.3) 

where K and bn are the kernel and the bandwidth respectively. Let 0n(f~) denote 
the estimator obtained as a solution of the estimating equation: 

n d 

t=~l d-O l°g at(O) ,] (4.4) 

Note that if fc is known, the usual likelihood equation is given by 

d fc ( X t -  #t(0)~ : 0 . (4.5) 
t~l  ~ l ° g  at(0) J 

If O~(f~) denotes a solution of (4.5) when f~ is known, one can show, under 
appropriate regularity conditions, that 
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~/~(0,,(f~) - 0n(f~)) = op(1) . (4.6) 

When (4.6) is satisfied, the estimator 0n(fn) is said to be adaptive. See Bickel 
(1982), Bickel et al. (1993) and Drost et al. (1997) for the theory and applications 
of adaptive estimation for semiparametric models. 

5. Bayes and empirical Bayes methods 

Suppose that prior information about the parameter 0 is available and that it can 
be quantified in the form of a density function ~(0), 0 E Q c R p. The density ~z(0) 
is referred to as the prior density. Given 0, the observation vector X(n) has density 
p(x(n) 10). If  b,, is an estimator of 0, and if l(6n, O) is a prescribed loss function, the 
Bayes risk (or average risk) corresponding to 6n is given by R(bn) = E(l(3,, 0)), 
where the expectation E(.) is with respect to the joint density, p(x(n)lO)~(O ). The 
Bayes estimator 6 ° of 0 is such that 

R(c5 °) <R(6n), for all 6~ EA , (5.1) 

where A is the class of all estimators with finite risk. If the loss function is 
quadratic, it can be shown that 

3 o ---- E(01X(n)) . (5.2) 

Define 

d21ogpn(X(n)]O) 
F,(0) = - dO dO T (5.3) 

If  0n is the maximum likelihood estimator, we have seen in Section 2, that under 
regularity conditions, 

F~/Z(0)(0n - 0)d-~Up(0, I) . (5.4) 

The ML estimator 0n ignores the prior information ~(0), and uses only the sample 
information contained in the likelihood function pn(x(n)lO ). It is of interest to 
compare the Bayes estimator 3 ° with the ML estimator 0n for large n. Under 
regularity conditions (see Basawa and Prakasa Rao (1980, Ch. 10)) one can show 
that 

1/2 o a r n (0)(3 n -  O) ,Np(0, I) , (5.5) 

and hence the Bayes estimator 6 ° is asymptotically equivalent to the ML esti- 
mator 0n. 

Often, the prior density depends on an unknown parameter, say e. Denote the 
prior density as ~z(0; e). The Bayes estimator of 0 will then depend on ~, and 

0 denote the Bayes estimator as c5 n (e). Since ~ is unknown, we may first estimate 
from the marginal density 
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p(x(n); =) = fp(x(n) lo) (o; @dO . (5.6) 

Let fin denote the maximum likelihood estimator of e based on the marginal 
likelihoodp(X(n); ~). The estimator, cS°n (c2n), obtained from the Bayes estimator by 
replacing e by ~n, is known as an empirical Bayes estimator of 0. It can be shown 
that 0 ^ 6n(en ) is a good approximation for the Bayes estimator 6°,(~), for large n. 

6. Some applications 

Here we give some examples to illustrate the inference methods discussed in the 
previous Sections. 

Ex. 1. Markov processes 

Let {Xt}, t = 1 ,2 , . . . ,  be a Markov process with a general state space )~ and 
stationary transition measures 

Fo(x,A) = Po(Xn+l E AlYn = x) , (6.1) 

0 C f2 C R p. Suppose these transition measures admit a unique stationary distri- 
bution Fo(.) defined by 

Fo(a) = [ Fo(x,A)Fo(dx) . (6.2) 

Furthermore, suppose that Fo(x,A) admit transition densities p(y,x;  0), with re- 
spect to a measure )~(-) defined by the relation 

Fo(x,A) = fAp(y ,x ;  O))o(dy) . (6.3) 

The likelihood function based on X ( n ) =  ( X ~ , . . . , X , )  (and conditional on 
X1 = xl) is given by 

n-1 

p,(X(n); 0) = Hp(Xt ,X t+ l ;O)  . (6.4) 
t=l  

Under regularity conditions (see Billingsley (1961)) it can be shown that the 
model belongs to the LAN family. See also Roussas (1972). 

As a specific example, consider a finite state Markov chain with state space 
)~ = { 1 ,2 , . . . ,  m}, and the transition densities 

P i j  =P(Xt+l = jIXt = i), i , j  C )~ . (6.5) 

Let nij denote the number of transitions i -+ j in the sample X(n). The likelihood 
function is given by 
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pn(X(n); 0) = H p ~  v . (6.6) 
~,j 

Here the parameter space for 0 = {pij, i , j  E Z, s.t. ~ j p i j  = 1}. The maximum 
likelihood estimator of  Pij is seen to be 

1)ij =--,nij i , j  E )~ , (6.7) 
hi. 

where ni. = ~ jn i j .  It can be shown (see Billinglsey (1961)) that x / ~ i j - p ~ j ) ,  
i , j  E Z, are jointly asymptotically normal with mean zero and asymptotic vari- 
ances and covariances given by 

1 
o'i4,i,,j, = re7 jail, ( g)jj,pij - pijpi,j, )] , (6.8) 

where 6u~ denotes the indicator function which takes the value 1 if u = v and zero 
if u ¢ v. The asymptotic optimality property of {J3ij } is assured by the LAN 
property. See Basawa and Prakasa Rao (1980a, Ch. 4) for various problems of 
inference regarding finite Markov chains. 

Ex. 2. Branching processes 

Let X0 = 1, X1, X2.. .  be the generation sizes of a Galton-Watson branching 
process with offspring distribution 

P(X1 = j ) = p j ,  j = O ,  1 , 2 , . . . .  (6.9) 

Let {Ykl}, k = O, 1, . . . ,  l = 0, 1, . . . ,  denote t he / th  offspring belonging to the kth 
generation. We then have 

x,, 
Xn+l = Z Ynl • (6.10) 

/=1 

Note that {Xt} is a Markov process with state space Z = {0, 1,2, . . .} and the 
transition probabilities 

pij  = P(Xn+I = j[Xn = i) 

=P(I__~Y~I j )  • (6.11) 

The random variables {Ykl} are assumed to be independent and identically dis- 
tributed, each distributed as )(1, with E(X1) = # and Var(X~) = o -2. More specif- 
ically, suppose the offspring distribution belongs to the power series family, viz., 

P ( X l = x ) = a x O ~ / A ( O ) ,  x = O ,  1 , 2 , . . . .  

where A(O) = ~x~=0 ax0 ~. We have 



Inference in stochastic processes 

# = O ~ o ) / A ( O ) ,  and ~r 2=0~d# . 

The likelihood function based on 0(1,. . .  ,X,) is given by 

We have 

p,,(X(n); O)ctO~ X' (A( O) ) ~  x~ z 

S,(/~) = ~logp~(X(n);O)o# = (~logp,(X(n);O).) 

= - - 1  

71 

(6.12) 

(6.13) 

The equation Sn(/~) = 0 gives the ML estimator of #: 

n n 

/~ = Z X t / Z X t _ I  . (6.14) 
1 1 

The Fisher information is seen to be 

/ - ~ 2  l°gPn\  ~ 5  -2 . . ( / z n - 1  ) 
(6.15) 

Assume throughout that P(Y1 = 0) = 0, and # > 1 to avoid extinction of the 
process. It can be shown that 

~2 logp~ / . ,  ,'~ 
/L,~#))  ~ W ,  as n--+ oc , (6.16) 

where W > 0 is a non-degenerate random variable. This process, therefore, 
belongs to the LAMN family. See Basawa and Scott (1983) for problems of 
inference regarding/~. See also Heyde (1975). 
Let 

n 

Jn(#) = ° - -2(#)  ~ X t - 1  • (6 .17)  
1 

One can show that 

1/2 ^ d-~N(0, 1) . (6.18) J ;  - 

The result in (6.18) is equivalent to 

d , I~/2(#)(fi, - #) --+U (0, W 1) . (6.19) 

Note that the limit distribution N* in (6.19) is a mixture of normals rather than a 
normal. 
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Guttorp (1991) gives an extensive review of inference problems for branching 
processes. 

Ex. 3. Time series 

Consider the model 

Xt = mr(O) + ~t(O)et , (6.20) 

2 Also, mr(O) where {et} are i.i.d, random errors with mean zero and variance o-. 
and at(0) are specified J~t_l-measurable functions. The model in (6.20) includes 
linear time series models such as ARMA, and nonlinear time series such as the 
threshold autoregressive (TAR) processes. In addition, (6.20) includes the con- 
ditionally heteroscedastic autoregressive (ARCH) models. Drost et al. (1997) 
have established the LAN property for the general class of models in (6.20) when 
the density of the errors f~(-) is specified. The optimality properties of the ML 
estimator of 0 and of related test statistics follow immediately. 

Moreover, Drost et al. (1997) have studied adaptive estimation of 0 when f,(.) 
is unknown. 

Ex. 4. Conditional exponential Markov processes 

Let {Xt} be a stationary ergodic Markov process with transition densities of the 
form 

p(xt, Xt+l ; O) = h (xt, Xt+l ) exp [oTz(xt, xt+I ) -- g(O, xt)] ., (6.21) 

where 0 is a (p x 1) parameter, Z(.) is a specifiedp x 1 vector of statistics, and g(.) 
is a given real valued function. The likelihood equation based on 
X(n) = (X1,... ,Xn) is given by 

~=l (dg(O,Xt) ) n-£ 
• ~ " - -  Z(Xt,z~t+l) = 0 . (6.22) 

- -  t = i  

Under regularity conditions, Hwang and Basawa (1994) have established the 
LAN property for the above model. If  0n is a consistent solution of the equation 
(6.22), it can be shown that 

v/~(O, - O) a Np(O, F -1 (0)) , (6.23) 

where 

r(O)=E{'d2g(O,X,)) 
\ d0d0 T J '  

(6.24) 

the expectation being taken with respect to the stationary distribution. Hwang 
and Basawa (1994) have also discussed applications of the above model to several 
nonlinear time series examples. 
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Ex. 5. Random coefficient autoregressive processes 

Suppose {Xt} is a sequence of random variables defined by 

X t = H o ( X t _ l , Z t )  q- c t , (6.25) 

where {Zt} and {et} are independent sequences of i.i.d, random variables (un- 
observed), and Ho(.) is a specified function. It then follows that {Xt} is a Markov 
process with transition densities 

xt+l ; O) = / f~(xt+l - Ho (xt, zt))gz(z)dz , (6.26) p(xt, 

where f~(.) and 92(') denote the densities corresponding to et and Zt respectively. 
The above model includes the following special cases: 

(i) Random coefficient AR(1): Ho(x,y) = (0 + y)x. 
(ii) Threshold AR(1): Ho(x,y) = 01x + + 02x-, where x + = max{0,x}, and 

x-  = min{0,x}. 
(iii) Exponential AR(I): Ho(x,y) = [01 + 02 exp(-O3x2)]x. 
(iv) Random coefficient exponential AR(1): 

H O ( x , Y )  : [(01 -]-Yl) -}- (02 -l-Y2) exp(--x2)]x , 

with y = (Yl ,Y2) r. 
(v) Random coefficient threshold AR(1): 

Ho(x,y) = (0~ +ya)x + + (02 +y2)x-,  with y = (yl,y2) T . 

Hwang and Basawa (1993) have established the LAN property for the general 
class of random coefficient models defined by (6.25) and studied problems of 
inference regarding 0. 

Ex. 6. The pure birth process 

Let {X~}, t > 0, be a pure birth process with birth rate 0, and X0 = 1, where Xt 
denotes the population size at t. This is a continuous time Markov process. The 
intervals between births, Tk = tk - tk-a, k = 1,2 , . . .  are independent exponential 
random variables with E(Tk) = (kO) -1, where tk denotes the epoch of the kth 
birth. Suppose we observe the process continuously over the interval (0, T). Let 
B(T) denote the total number of births occurring in the interval (0, T). Note that 
Xr = B(T) + 1. The likelihood function is given by 

pr(x(O,T);O) = (~]fT kOexp(-kOTk)) e x p ( - ( T -  tB(r))OXr) • (6.27) 
/ 
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We then have 

d logpr _ B(T) 
dO 0 

_ B ( r )  

0 

and 

d 2 logp~- B(T) 
d0 2 0 2 

B(T) ] 

~ krk + ( r  - tB(T1)XT , 
k=l 

.f0Txt dt , 

The maximum likelihood estimator of 0 is given by 

/0" Or = B ( T ) /  Xt dt . (6.28) 

It can be shown that, as T -+ oc, 

B1/z(T)(Or- O) d N(0, O 2 ) . (6.29) 

Here we have 

B(r)/E(B(r)) ~ W, 

where W > 0 is a non-degenerate random variable. See Keiding (1974) for details. 
Consequently, this example belongs to the LA MN  family. 

Ex. 7. Optimal estimating functions for longitudinal data 

Let Xit denote the observation on the ith individual at time t, i = 1 , . . . ,  m and 
t = 1 , . . .  ,ni. Denote Xi = (X~I,... ,Xini) T, the vector of observations on the ith 
individual. Assume that X~ are independent with 

E(Xi) = #i(P), and Cov(Xi) = V//(]], 5) , (6.30) 

where p is the parameter vector of interest and at is a vector of nuisance 
parameters. When ~ is known, Godambe's optimal estimating function for fl is 
given by 

+ ~ P i  ~ - l ( y  i __ }/i) " (6.31) g=~e/~ 
If/~ is a consistent solution of the equation g = 0, one can show, under regularity 
conditions, that 

d 
H2/2@ - fl) - -+N(0,  I), as n -+ oo , (6.32) 

m where n = ~i=1 hi, and 
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Hn = ~ ( d ~ i ~  ( d ~ i ~  T 

i=1 \d /~J  Vi-1 \dfiJ 
(6.33) 

See Fahrmeir and Kaufmann (1985) for the application of the above approach to 
the generalized linear model. 

The nuisance parameter e can usually be estimated via ad hoc methods such as 
the method of moments or the least squares. See Liang and Zeger (1986), Prentice 
(1988), Liang et al. (1992) and Zhao and Prentice (1990) for various inference 
problems concerning longitudinal data. 

Ex. 8. Bayes and empirical Bayes estimation for autoregressive processes 

Let Xt(j) denote the observation on the j th  individual at time t, t = 1 , . . . ,  T and 
j = 1 , . . . ,  n. Consider the model 

Xt(j) = ff)jXt-l (j) + et(j) , (6.34) 

where {qSj} are assumed to be independent N(a~p,o~), I~ is a (p x l) vector 
of parameters and aj are (p x 1) vectors of known covariates. It is assumed 
that {ct(j)} are independent N(0, o -2) random errors, which are independent 
of {~bj}. The conditional distribution (posterior distribution) of ~n given 
X(n) = (Xl(n),. . .  ,XT(n)) T is seen to be S((3, a~a20/a), where 

3 =  2 - 1  T ( a ~ a ) a , , / ~ +  (1 - a~c-1)q~,, , (6.35) 

and 

T 
X 2 C = O- e 

t= l  

=  t(n)Yt-1 (n) 

E -I X, l(n/ 

It is assumed that X0(j) = 0 for each j. Ifa~, a~ and fi are known, ~ in (6.35) is the 
Bayes estimator of q~n with respect to the quadratic loss function. The estimator c5 

2 2 n is based on the T observations on the nth individual. If a~, ¢r¢ and fl are unknow 
they may be estimated from the marginal likelihood based on all the nT obser- 
vations, {Xt(j)}, j = 1 , . . . , n  and t =  1 , . . . ,T .  Let ~ denote ~ after a~, a~ and fi 
are replaced by their estimates. Then 6 is an empirical Bayes estimator of ~bn. See 
Kim and Basawa (1992) for the properties of 6. 
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