Hedging of Interest Rate
Derivatives

Cash and the Zero Curve

The simplest contract is a unit notional, zero-coupon
bond to be paid at time 7 (the maturity). The value
of such a bond is denoted by P(T).*

The function P thus describes the evolution
through time of interest rate expectations.

The instantaneous forward rate f is defined by
f(T)=—P/'(T)/P(T). Thus, the forward curve f
provides a local view of the market forecast for future
interest rates. While knowledge of P and f are in
principle equivalent, the latter provides a superior
framework for practical analysis.

FRAs, Swaps, and Bond Equivalence

A forward rate agreement, FRA, is a contract to lend
at a previously agreed rate over some time inter-
val—thus it is equivalent to a calendar spread of
zero-coupon bonds. A swap is very similar to a suc-
cession of FRAsS, so its price can nearly be determined
from the zero curve. The slight differences between
Libor swaps and coupon-paying bonds stem from the
differences between the Libor end date and the period
payment date, and also (in most currencies) the differ-
ence between fixed and floating payment frequencies.
For a more detailed description, see LIBOR Rate.

Libor Futures

A Libor futures contract (see Eurodollar Futures
and Options) pays, at its settlement, a proportion
of the Libor rate fixed on the futures expiry date.
However, since an FRA makes its payment only at
its maturity date, its par rate in a risk-neutral world is
equal to the expectation under the discount-adjusted
measure to that maturity date. The daily updating of
posted margins for Libor futures means that profit or
loss from rate fluctuations is realized immediately;
thus the par futures price reflects the risk-neutral
expectation in an undiscounted measure.

Because the resulting “futures convexity adjust-
ment” does not closely track other measures of

volatility, it is traded actively only by a few
specialists. For most purposes, we can think of a
future as being equivalent to an FRA plus an exoge-
nously specified spread.

Yield Curve Construction

Since the function P(T), or equivalently f(7T),
practically determines the value of these Libor-
based instruments, we price less-liquid instruments
by fitting a yield curve—any object from which P
and f can be computed—to the observed values of
the most liquid build instruments. Since there will not
be above a few dozen such instruments, this fitting
problem is severely underconstrained.

One common method is bootstrapping of zero
yields: we specify that the yield curve will be defined
by linear interpolation on the zero-coupon bond
yield y(T) = —1In P(T)/T. This restricts the curve’s
degrees of freedom to one per interpolation point. If
we place one interpolation point at the last maturity
date (the latest payment or rate end date) of each
build instrument, we can solve for each corresponding
value of y with a succession of one-dimensional root
searches.

Since f(T) = y(T) + Ty'(T), the forward curve
thus constructed is gratuitously discontinuous and
contains large-scale interpolation artifacts. We do not
wish to recommend this construction method or to
disparage others, but only wish to note its frequent
use and to show a concrete example. For a more
complete discussion, see Yield Curve Construction.

Hedging on the Yield Curve

Once a yield curve is built, it can be used to price sim-
ilar trades that are not among the build instruments,
such as forward-starting or nonstandard swaps. Such
pricing depends on two implicit assumptions: that
the yield curve is the underlying of these trades as
well as of its build instruments, and that its interpo-
lation methods (or other nonmarket constraints) are
sufficiently accurate. In practice, the former is widely
accepted for Libor-based products, while the latter is
a major arena of competition among market makers.

Any trade priced on the yield curve will have a
forward rate risk, which we denote by & (T), so that
its change in value for a small curve fluctuation A is
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e U(f) is the trade’s value for a given yield curve
described by the forward rates f;
e 1(z) is a C*™ test function with support in [0, 1]
1
and [y n=1; and
o Ne(2) =n(z—1)/e).

For the linear trades, that we have so far discussed,
8y will change very little as f changes. A portfolio
of trades with no net & has, at least for that moment,
no interest rate risk.

Figure 1 shows the forward rate risk for a swap.
The large-scale behavior is unsurprising; the forward
rate risk steadily decreases as coupons are paid. The
small-scale spikes are caused by overlapping, or in
one case underlapping, of the start and end dates
for the Libor rates on the floating side. The vertical
scale is, of course, proportional to the swap notional
amount, and is not shown here.

In practice, especially when trades cannot be
exactly represented by equivalent cash flows, we
will not know 8, exactly but we will have rather
a numerically computed (e.g., piecewise constant)
approximation thereto; but since we can control the

buckets, that is, the intervals over which §; is kept
constant, this is not a major difficulty.

Response Functions

However, we cannot execute a hedge of the forward
rate risk directly; instead, we must choose a set
of hedge instruments that will allow us to offset
it. Often, these hedge instruments are exactly the
build instruments. Each hedge instrument will also,
of course, have a forward rate sensitivity. In practice,
we generally consider the sensitivity, not of the
instrument value, but of the implied par rate (or just
implied rate): The implied FRA rate for futures, par
coupon for swaps, or yield for bonds implied by the
yield curve.

In this case, we can compute a hedge by slightly
bumping each instrument’s implied rate r;, rebuild-
ing the curve, repricing the trade being hedged,
and measuring its price change. This method has
the advantage of enabling very precise p/l explana-
tion, at the cost of requiring repeated yield curve
builds.

The resulting instrument sensitivity is closely
related to the forward rate risk. To be precise, let
the response function B;(T)=dF(T)/dr;. Then,
the instrument sensitivity is exactly B/8,. Thus,
response functions provide an ideal tool for exam-
ining curve build methods.
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Figure 2 Response of F to fourth future and to 4-year swap

The response functions for two typical build
instruments are displayed in Figure 2, for two dif-
ferent curve build methods. The response to a futures
rate, shown against the left-hand scale, changes the
forwards within the futures period and decreases
them in the interval from the last future to the first
swap (so that all other build instruments will have
unchanged rates); naturally, within the futures period,
dF(T)/dt; ~ 1. The response to a swap rate, which
is substantially larger, is shown against the right-hand
scale. In both cases, the bootstrapped curve shows the
“sawteeth” characteristic of linear interpolation on y,
while the smooth curve shows the inevitable loss of
locality. This tension between smoothness and local-
ity arises because a smooth curve, by its very nature,
must alter values far from the source of a change in
order to preserve smoothness; for details see Yield
Curve Construction.

Bucket Delta Methods

Another common hedge method is to set the bucket
end dates to the maturities of the curve build instru-
ments, and then compute the bucket deltas: sensitivi-
ties 8y to the forward rate in the kth bucket, computed
by applying a parallel shift to those forward rates. We
can also define a Jacobian matrix J such that J; is
the sensitivity of the ith instrument’s implied rate to
the forward rate in the kth bucket; then the instru-
ment sensitivities are given by J~!8. This is known
as the inverse method.

A hedge can also be constructed from 5 by
minimizing the p/l variance of the hedge trade plus
a portfolio of hedging instruments; for this we need
an estimate of the covariance X (7, T,,) between the
forward rates f(7;) and f(T,,). The variance is then
a quadratic form in the hedge instrument notionals,
which can easily be minimized. Any other quadratic
form, such as a penalty function based on the hedge
notionals, can be included without difficulty.

Nonlinear Products

For any product, the sensitivity 6 is defined in each
yield curve state; however, it need not be independent
of that state. This nonlinearity is most pronounced
for options, especially when they are short-dated and
nearly at-the-money. In this case, to lock in an option
value by hedging we must dynamically rebalance
the hedging instruments, subject to the well-known
limitations of payoff replication strategies.

One issue of particular importance is that the
local hedge, based on &, in the current state of the
yield curve, can differ greatly from the variance-
minimizing hedge if the rebalancing frequency is
finite or if jumps are present. This occurs when
the distribution of possible curve shifts is strongly
asymmetric, or more frequently when the second
derivative of the payoff is highly state-dependent.

These issues are not unique to interest rates, but
they can become more pronounced for some payoffs
owing to the tendency of short rates to move in



