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a b s t r a c t

In this article we develop a control system model for describing efficient financial mar-
kets. We define the efficiency of a financial market in quantitative terms by robust asymp-
totic price–value equality in this model. By invoking the Internal Model Principle of
robust output regulation theory we then show that under No Bubble Conditions, in the
proposed model, the market is efficient if and only if the following conditions hold true:
(1) the traders, as a group, can identify any mispricing in asset value (even if no one single
trader can do it accurately), and (2) the traders, as a group, incorporate an internal model
of the value process (again, even if no one single trader knows it). This main result of the
article, which deliberately avoids the requirement for investor rationality, demonstrates,
in quantitative terms, that the more transparent the markets are, the more efficient they
are. An extensive example is provided to illustrate the theoretical development.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

One of the most remarkable empirical facts of capitalist economic systems is that they appear to allocate resources
efficiently in the absence of any external guidance. The ‘‘invisible hand’’ theory, originally set forth by Adam Smith [1],
postulates that if each consumer is allowed to freely choose what to purchase and each producer is allowed to freely choose
his or her product line, the market will settle on a product distribution and prices that are beneficial for the entire economy.
This settlement occurs by means of a self-regulating process, the Walrasian tâtonnement (see e.g. Ref. [2]), which involves
a search of balance of net supply and demand for the products based on the current observed prices for the products.

That markets are capable of efficiently allocating resources and stabilizing the price of an asset implies that the markets
must, in some sense, take into account all information affecting the assets price. This is the essential content of the celebrated
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Fig. 1. The full value discovery process model for tâtonnement considered in the present article. Value discovery requires that limt→∞ e(t) = 0.

Efficient Market Hypothesis (EMH) due to Samuelson [3], Fama [4] and others. Although there exist many forms of the EMH,
in broad terms they all assert that a market is efficient if prices immediately, for all practical purposes, reflect all relevant
information about the assets on the market. The EMH thus requires that, on average, the population is always correct about
the price (even if no single person is) and as new information appears, the market participants revise their expectations
appropriately to maintain this state of affairs.

The degree towhich the EMHholds true in practice has been debated in the academic literature over the course of decades
(see Ref. [5] for a review). The observation that perfectly efficient asset prices imply purely randomprice fluctuations [3], and
the subsequent conflicting rejection of the random walk property of observed asset prices [6], the existence of bubbles and
crashes in asset prices [7], and the unusual profitability of simple technical strategies (see e.g. Ref. [8]), are among the key
sources for criticism for the EMH. A conclusion of these studies is that the degree to which markets are efficient is likely not
constant over time. In particular, as new information is being processed by market participants, there is a transient period
(of unknown and varying duration) during which price may not reflect true value.

In spite of the progress made on understanding the nature of market efficiency, the actual mechanism by which prices
adjust to new information – i.e. information processing by market participants during the tâtonnement process – appears
to be relatively unknown [9]. In particular, to the author’s knowledge there is no comprehensive mathematical model for
price discovery based on the market participants’ behavior. The purpose of this article is to fill this gap by presenting such
a model for efficient markets. Our model explains, in rigorous terms, what it means for the markets to incorporate all
available information about an asset, and provides necessary and sufficient conditions for value-based price discovery. The
significance of such a model is not only in its ability to explain the behavior of market participants during tâtonnement but
also, via the presented necessary conditions for EMH to hold, in the new directions it provides for testing – and perhaps
rejecting – the hypothesis in practice.

1.2. Contribution of this article

The model developed in Section 2 allows us to formulate the entire Walrasian tâtonnement process as a robust output
regulation problem. We can then invoke the celebrated Internal Model Principle of control theory (see e.g. Refs. [10,11]) to
establish the main result of the article in Theorem 1. It shows that under No Bubble Conditions, the market for an asset A is
efficient precisely when the following two conditions hold true:

1. The traders, as a group, can identify any mispricing in asset A;
2. The traders, as a group, incorporate an internal model of the value process for A.

A remarkable feature of our model is that, besides linear deterministicity discussed below, we make relatively few
assumptions about the specific structure of the markets and about the arrangement of the individual traders and investors.
As demonstrated in Fig. 1, we essentially treat the investors and the market as interconnected ‘‘black boxes’’ whose
dynamical properties result from the interaction of – potentially a vast number of – individuals. Consequently, ourmodeling
framework can simultaneously incorporate any number of traders with different trading strategies. These can include,
among others, arbitrage strategies, value-driven ones whereby the traders’ actions are driven by a perceived price–value
discrepancy, andmomentum-based ones, depending on positive feedback, without any regard to the specific design of their
individual trading strategies. Further, it is remarkable that the occurrence of price–value discovery in our model does not
depend on all market participants being rational. Indeed, part of the net demand–supply affecting the current price level
in the presented model results explicitly from potentially irrational investors. In addition to this, our modeling approach to
the market place dynamics allows us to incorporate a number of typical market microstructure models, such as the ‘‘law of
the market’’ considered by Mosetti [12].
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In this article, all dynamical systems are deterministic, linear and finite-dimensional. We conclude this subsection by
addressing these individual choices separately.

The assumption of deterministicity is justified by our formulation of the value discovery process as a robust output
regulation problem: In our framework, the trader model and the market model are a priori known to be uncertain and
subject to additive perturbations and/or parameter drift. We require asymptotic price–value equality irrespective of what
the true value is and irrespective of these uncertainties, which are not necessarily small in magnitude in our model. Taking
stochastic uncertainty into account is a topic for future research.

Our standing assumption of linearity, on the other hand, covers the transient period after a ‘‘news shock’’, which leads to
value discovery under the given conditions. We do not assume system linearity at the time of news arrival. Indeed, traders
may revise their linear models in nonlinear ways at the time of such news shocks; our robustness results provide conditions
for market efficiency to prevail. Further, system linearity during the transient period is motivated by the observation that
a linear approximation of an underlying nonlinear process is often accurate at least locally, in the vicinity of the present
operating point, which in this case is the current state of a market (and traders) after a ‘‘news shock’’. While the reader
may consider linearity to be a strong assumption, we point out that nonlinearity, in an of itself, would be a rather general
assumption in this context. Indeed, the Internal Model Principle, which is provides an equivalence relation between the
controller structure and solvability of a regulation problem, and which is the foundation of our approach, has only been
proved for linear systems [10,11]. Significant progress has been made on nonlinear systems, too [13,14]. Consequently, an
important topic for future research is to establish a suitable nonlinear systems framework, covering typical nonlinearmodels
for financial markets, for which the results of this article can be generalized.

Finally, while today several generalizations of the Internal Model Principle exist for infinite-dimensional systems (see e.g.
Ref. [11]), none of them appears to address the case inwhich the exosystem output is not directly observed by the controller.
This is a crucial feature in our model—individual market participants only know their individual estimates of true value.

1.3. Relation to prior work

Conditions for the existence and uniqueness of a stable price, i.e. the end result of the tâtonnement process—are provided
by the well-known general equilibrium models of economics (see e.g. Ref. [15] and the references therein). The transient
state, i.e. information processing by the market participants, preceding the equilibrium state, however, is much less well
understood although significant progress has been made recently. Topics such as the path of price discovery [16], the speed
of convergence of price to an equilibrium [17], the market impact of changes in supply and demand [15], and the effect of
specific trading strategies on price discovery [18,19], have received considerable attention in the recent academic literature.

In this article, we do not attempt to show how agent-specific optimization leads to value discovery. In contrast, we
focus our attention on the necessary and sufficient feedback structure of the market system, for which price efficiency is
achievable. In practice, then, the aggregate effect of agent-specific optimization should be the fulfilment of these conditions.

Several researchers have utilized dynamic systems and feedback control theory for describing trading and the
tâtonnement process. By interpreting trading strategies as a feedback controller, Alvarez-Ramirez et al. [18] showed
that trend followers can lead to oscillatory phenomena, and that adaptation mechanisms driven by fundamental value
considerations are necessary in order for prices to track values. Farmer and Joshi [19] studied the price dynamics induced
by several commonly used (deterministic) trading strategies, including value investing and trend following. Hommes [20]
observed that the aggregate effect of simple traders at the micro level may be a sophisticated structure at the macro level.
More recently, Chiarella et al. [21] estimated the parameters of a dynamical system consisting of fundamental and chartist
traders; their model could explain, for example, the inflation and deflation of bubbles.

We believe this article presents the first formulation of the entire the value discovery process as a generic interconnection
of linear dynamical systems (Fig. 1). The results we derive in this modeling framework thus differ from those cited above
in that we do not need to impose any explicit specification for traders or the market mechanism transforming supply
and demand to a price–value. Further, the main result of this article, which provides necessary and sufficient conditions
for market efficiency, appears to be new: It is the first quantitative description connecting market efficiency directly to
the information that the traders must (and need not) possess, and to the feedback structure of the traders as a group.
Its formulation and proof involve an adaptation of the well-known Internal Model Principle of control theory (see e.g.
Refs. [10,11]) to the financial markets’ situation.

To our knowledge, only Mosetti [12] has attempted to provide a conceptual description of the structure of a market
with stable prices using the Internal Model Principle, albeit without direct reference to the EMH. Mosetti’s results assume a
perfect foresight of the equilibrium prices, whereas in this article no one single trader has to know the true value. Further,
in Mosetti’s results [12], supply and demand are driven by expectations of future prices, without regard to how such
expectations are formed. In contrast, in this paper we specify the necessary and sufficient structure of traders leading to
‘‘stable’’ prices in the sense of market efficiency. Finally, while the price process is driven by a regulator system in Mosetti’s
work [12], there appears to be no clear link between market participants and the regulator. In particular, Mosetti does not
address the possible dynamical specifications of traders’ trading strategies, nor consider uncertainty within them. In our
approach, the role of certain traders as a regulator is clearly described; here the traders (as a group) only learn the value,
i.e. the current equilibrium price, of the asset. Finally, our model can be subject to unknown (additive) perturbations to the
model’s parameters, as well as disturbance supply–demand generated by noise traders.



174 E. Immonen / Physica A 433 (2015) 171–181

2. The value discovery process model

In this sectionwe develop a feedback control systemmodel forWalrasian tâtonnement,whichwe call the value discovery
process model, as illustrated in Fig. 1. We hasten to emphasize that, while the development presented below may at the
outset seem abstract – and perhaps even contrived – it includes many of themodels presented in the academic literature on
finance an economics as special cases. Our model covers asset value dynamics, market price dynamics and trader dynamics,
which are discussed in separate subsections below. Note that throughout this article we can assume logarithmic prices, to
allow for negative values.

2.1. Asset value dynamics

Let W be a finite-dimensional vector space. The value, and traders’ estimates thereof, of A are then assumed to be
described by the following linear dynamical system:

ẇ(t) = Sw(t), w(0) = w0 ∈ W (1a)
v(t) = Qw(t), ∀t ≥ 0 (1b)

ṽ(t) = Q̃w(t), ∀t ≥ 0 (1c)

where the linear maps S : W → W,Q : W → R and Q̃ : W → Y, where Y is another (finite-dimensional) linear space.
The linear spaceW can be thought to consist of all factors that affect the value of assetA from the signal generation point

of view [11]. In Eq. (1b) v(t) denotes the true value of asset A (e.g. after a news shock at t = 0), which is a scalar function
v(t) = QeStw0, t ≥ 0. It is important to observe that while we assume the existence of a ‘‘true’’ value, it is not necessarily
known to any one trader. Instead, by Eq. (1c) traders of asset A have formulated their estimates of value, which are collected
in the vector ṽ(t) = Q̃eStw0, t ≥ 0.

In our model, any news event can be regarded as a change of parameters in the above value process, thus starting a new
tâtonnement process. We can therefore, without loss of generality, assume that during the tâtonnement process, there are
no additional news events affecting the value process (for otherwise the process would start over again).

To see how the dynamical system (1) relates to thewell-known asset valuationmodels of contemporary financial theory,
consider the Capital Asset Pricing Model (CAPM) equation:

rA = αA + βA · MRF (2)
where αA and βA are asset-specific parameters obtained from regression analysis, while MRF denotes the expected market
return in excess of the risk-free rate. If we interpret the CAPM equation (2) as a prediction of the constant future value for
asset A, then it is easy to specify an equivalent system (1) to generate this value. To this end let the current market price
of A be PA. Then, assuming logarithmic returns, we can choose W = R2, S = 0 ∈ R2×2,Q =


αA + log PA βA


and

w0 =

1 MRF

T . Clearly this specification yields for A the true value v(t) = QeStw0 = Qw0 = log PA + αA + βA · MRF
for all t ≥ 0, which is just a restatement of Eq. (2). We stress that, in our framework, the actual values of the coefficients αA

and βA – and hence also the true value v – may be unknown to the traders. Also note that, in this example, any news event
concerning stock A can be assumed to affect the true value of A through a change in αA or βA, or even through a change in
MRF if the news is significant enough.

The system (1) can also be chosen to generate seasonal (periodic) values, ramps and other typical signals. For more
information, we refer the reader to the author’s thesis [11]. The simplest dynamical system (1) for generation of constant
signals is utilized in Section 4 .

2.2. Market price dynamics

Let U be a finite-dimensional vector space. The net demand–supply from so-called model-based traders (see Sec-
tion 2.3.1) is denoted by u(t) ∈ U for each t ≥ 0. In the simplest case U = R, whereby u(t) > 0 (resp. u(t) < 0)
signals that there is, in total, more buying than selling (resp. more selling than buying) of A, and the price of A should tend
to rise (resp. fall). However, as we shall see in Section 4, it is convenient to allow for vector-valued functions u.

The dynamical system, which transforms the aggregate net demand–supply to the asset price p(t) ∈ R, is defined as
follows:

ż(t) = Az(t) + Bu(t) + N(t), z(0) = z0 ∈ Z (3a)
p(t) = Cz(t), ∀t ≥ 0 (3b)

where Z is a finite-dimensional vector space and where the linear maps A : Z → Z, B : U → Z and C : Z → R. In Eq.
(3a) N(t) denotes the effect of noise trading, as defined in Section 2.3.2.

The matrices A, B and C in system (3) depend on the chosen market microstructure model. For example, the ‘‘law of the
market’’ considered by Mosetti [12] is specified as ṗ = H(u), where H(·) is a function such that H(0) = 0 and H ′ > 0, and
where u(·) is an excess demand function. By linearizing this differential equation, we obtain an equivalent (local) realization
(3) as follows: Z = R, A = 0, B = H̃ > 0 (constant from linearization), and C = 1.
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2.3. Trader dynamics

In ourmodeling framework, there are two categories of traders for assetA; namely thosewhobase their trading decisions
on some form of market analysis for asset A and those whose net demand–supply for A is independent of the price and
value of A. These traders are referred to as model-based traders and noise traders, respectively, and they are defined in the
following Subsections.

2.3.1. Model-based traders
Referring to Fig. 1, the model-based traders (as a group) are assumed utilize an interpretation p̃(·) of the state of the

market together with their estimate of value ṽ(·), to come up with their aggregate net demand–supply u(·). As indicated
in Fig. 1, this interpretation of market price is not necessarily equal to the asset price p(·) in (3b), but in simple cases we
may have p̃ = p. Further, the value estimate ṽ is not necessarily equal to the true value v of asset A, which may even be
unknown to the traders.

To describe the dynamics of u(t) ∈ U for all such model-based traders, let X be a finite-dimensional vector space and
consider the following linear dynamical system:

ẋ(t) = Acx(t) + Bcy(t), x(0) = x0 ∈ X (4a)
u(t) = Ccx(t) + Dcy(t), ∀t ≥ 0 (4b)

y(t) = C̃z(t) − Q̃w(t) = p̃(t) − ṽ(t), ∀t ≥ 0 (4c)

where the linear maps Ac : X → X, Bc : U → X, Cc : X → U,Dc : Y → U and C̃ : Z → Y.
The essence of y, which drives Eqs. (4a) and (4b), andwhich is defined in (4c), is as follows: Model-based traders make an

interpretation C̃z(t) = p̃(t) of the state of the market at time t , and they compare it to their present estimate of ‘‘fair value’’
ṽ(t) = Q̃w(t) of this quantity. The simplest case is C̃ = 1C and Q̃ = Q , whereby all model-based traders are assumed to
compare the observed market price directly to the true asset value. However, as we shall show in Section 4, this definition
can also cover, among others, arbitrage traders whose induced net demand–supply only depends on the observed price
difference between two (or more) exchanges. It is also important to emphasize that, in system (4), the traders’ decisions do
not need to be independent of each other.

Farmer and Joshi [19] considered ‘‘fundamental value’’ traders acting upon the feedback law u(t) = λy(t) = λ(p(t) −

v(t)). A realization (4) for this law is clearly obtained by setting X = R, Ac = Bc = Cc = 0 and Dc = λ in Eqs. (4), and
by assuming that C̃ = C and Q̃ = Q . On the other hand, Alvarez-Ramirez et al. (cf. Ref. [18, Result 1]) considered traders
utilizing a proportional–integral feedback law of the market price and a (constant) price forecast v:

u(t) = kp(p(t) − v) + ki

 t

0
(p(σ ) − v)dσ . (5)

According to Alvarez-Ramirez et al. [18], a trend following (resp. contrarian) trading strategy corresponds to kp > 0 and
ki > 0 (resp. kp < 0 and ki < 0). We can easily build a state space realization (4) for this trading strategy as follows: Choose
X = R, Ac = 0, Bc = ki, Cc = 1,Dc = kp. In Ref. [18] the traders had to utilize the true asset value v, while we will
demonstrate in Section 4 that traders can be arranged so that true value needs not be known to any one trader.

2.3.2. Noise traders
In our modeling framework, noise traders act as a disturbance to the net demand–supply for asset A. They are assumed

to act without regard to actual asset values (or any estimates thereof). Thus we may specify their effect N(t) as follows:

N(t) = Pw(t), ∀t ≥ 0 (6)

where the linear map P : W → Z is typically unknown. It should therefore be emphasized that Eq. (6) is generic in the
sense that it only imposes a restriction on the dynamical behavior of the noise traders. Also note that if we can decompose
P = BPn for some linear map Pn : W → U, then we can decompose the net demand–supply in (3a) as u(t) = um(t) + un(t)
where um(t) is the net demand–supply from model-based traders and un(t) is a net demand–supply from noise traders. In
this special case noise traders affect the price in the same way as model-based traders, but the specification (6) also allows
for more general situations.

As an example, the effect of forced liquidations by funds holding asset A can be modeled using Eq. (6). Noise traders can
thus be regarded as (potentially) acting irrationally.

3. A quantitative description for efficient markets

Intuitively speaking, the market system presented in Section 2 is ‘‘efficient’’ whenever the market price p(t) in Eq. (3b)
reaches the asset’s value v(t) in Eq. (1b) at least asymptotically, i.e. as t → ∞. In Fig. 1 this is seen as e(t) → 0 as t → ∞.
Our concern in this section is to define market efficiency precisely in the modeling framework of Section 2 and to prove
necessary and sufficient conditions for it, by invoking the Internal Model Principle of robust control theory.
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Following the article [10] of Francis and Wonham, we shall, without any loss of generality, make the following standing
assumptions throughout the remainder of this article. See Ref. [10] and the references for justification of these assumptions.
1. All eigenvalues of S have a nonnegative real part.
2. R(C̃) + R(Q̃ ) = Y, where R denotes the range of a linear map.
3. C ≠ 0.

We begin by defining a number important concepts. The following definition is adapted from the concept of readability
in Francis and Wonham [10].

Definition 1. We say that the traders, as a group, can identify any mispricing in asset A if there exists a linear map
K : Y → R such that

C = KC̃, and Q = KQ̃ . (7)

Any linear map K : Y → R satisfying these two conditions is referred to as a readability map.

Definition 1 simply states that the information utilized by traders (as a group) is sufficient for inferring the true asset
value from it by v(t) = Qw(t) = KQ̃w(t), for all t ≥ 0, and that the traders (as a group) are able to compare it to the
present asset price p(t) = Cz(t) = KC̃z(t). Thus, the traders (as a group) can identify any nonzero value of v(t)− p(t), i.e. a
mispricing inA. We emphasize that, in Definition 1, no one single trader is required to know thematrix K ; only its existence
is required.

The following two definitions are also adapted from Refs. [10,11] to our framework:

Definition 2 (No Bubble Condition). If the closed loop matrix AL, defined by

AL =


A + BDc C̃ BCc

Bc C̃ Ac


(8)

is stable, i.e. all eigenvalues have negative real parts, then we say that there is no bubble in the pricing of asset A.

The relation of loop stability to asset bubbles in our terminology can be explained as follows. If the No Bubble Condition
(NBC) above holds, then the asset price p(·) is uniformly bounded for all uniformly bounded inputs to the loop system. In
particular, under the NBC, the traders cannot make the price rise exponentially (as in market bubbles) or fall exponentially
(as in market crashes), beyond all bounds, whenever their collective interpretation, i.e. y, of asset mispricing is bounded.
Furthermore, the NBC guarantees that there are no internal system instabilities, which are currently transparent to the
market price but which may show up on a small change of system parameters. In practice these could be e.g. programming
errors in the market’s order matching system.

In practice, the NBC is verified by checking the eigenvalues of the closed loop system. On the other hand, matrices
Ac, Bc, Cc and Dc satisfying the NBC can be found by using standard stabilization techniques of linear systems theory (see
e.g. Ref. [22] and the references therein).

Definition 3 (Robustness). Let Π be a property of the closed loop system, consisting of (1), (3), (4) and (6). We say that Π is
robust with respect to a set Ω of parameters if Π holds in an open neighborhood of Ω , as the parameters are subjected to
additive perturbations.

Since the eigenvalues of a matrix depend continuously on the entries of that matrix, if AL is stable, then AL remains stable
in the presence of small additive perturbations to ΩAL = {A, B, C, Ac, Bc, Cc,Dc, C̃}. Thus the NBC is robust with respect to
ΩAL .

To study market efficiency, we still need to define the concept of an internal model. To do this, we choose to slightly
modify the operator-theoretic definition introduced in Ref. [11] since it requires no additional concepts. We point out,
however, that several earlier analogues are available for finite-dimensional systems, see e.g. Francis and Wonham [10].

Definition 4 (Internal Model). Let K be any readability map and let Λ : W → X and ∆ : W → Y be arbitrary matrices. We
say that the traders, as a group, incorporate an internal model of the value process whenever the following relation holds
true:

ΛS = AcΛ + Bc1 H⇒ K∆ = 0. (9)

If K = I , the identity matrix, then relation (9) reduces to that introduced in Ref. [23]. This can be the case, for example,
if the model-based traders know the true value and compare the actual price to it (y = e).

If the NBC holds, if Y = R, K = I , and if the traders incorporate an internal model of the value process, then it can
be shown (see e.g. Ref. [11, Theorem 6.20]) that there exists a matrix Λ such that ΛS = AcΛ. Hence in this case the
interpretation of Definition 4 is that there exists an Ac-invariant subspace, namely R(Λ) ⊂ X, where the dynamics Ac
can be described by S [11]. From the signal generation point of view this means that any signal generated by the value
process can be reproduced by the traders (as a group) [11].
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Definition 5 (Efficient Market). In the closed loop system, consisting of (1), (3), (4) and (6), we say that the market (for asset
A) is efficient if the following conditions are satisfied:

1. For each w(0) in W, x(0) ∈ X and z(0) ∈ Z, we have |p(t) − v(t)| ≤ Me−at for some constants M > 0 and a > 0, such
that a is independent of w(0), x(0) and z(0);

2. Condition 1 is robust with respect to Ω = {A, B, C, Cc,Dc, P, C̃, Q̃ ,Q }.

It is important to observe that our formulation ofmarket efficiency above does not imply rational behavior for the traders.
On the contrary, if market efficiency holds in the sense of Definition 5, then |p(t) − v(t)| → 0 at an exponential rate even
in the presence of irrational traders (Condition 1), whose behavior, i.e. matrix P , can change within the scope of our closed
loopmodel (Condition 2). Another important point to observe is that we specifically avoid uncertainty in the internal model
(i.e. matrices Ac and Bc).

We conclude this section with themain result of the present article, followed by two clarifying remarks. The proof of this
main result is given in the Appendix.

Theorem 1. Assume that the No Bubble Condition holds for the closed loop system consisting of (1), (3), (4) and (6). Then the
market for asset A is efficient, such that P and Q̃ can be chosen arbitrarily, if and only if the following two conditions hold true:

1. The traders, as a group, can identify any mispricing in asset A, and condition (7) holds for the perturbed matrices for some,
possibly also perturbed, readability map K;

2. The traders, as a group, incorporate an internal model of the value process (1).

Remark 1. Condition 1 in Theorem 1 specifies the linear constraints (7) for perturbations to Q̃ ,Q , C̃ and C . Consequently,
even if Q̃ is arbitrary, the other matrices Q , C̃ and C are, in general, not arbitrary. However, besides these constraints, there
are no additional restrictions on perturbations to Q̃ and Q (such as small norm). In the special case where e = y, i.e. Q̃ = Q ,
we can set K = I , so that both P and Q can be chosen arbitrarily. In this case, the perturbations to C can be independent of
those to Q [23].

Remark 2. Since Theorem 1 is valid under the NBC, all perturbations to the system parameters must retain the NBC.

The following section presents an example of trader arrangement satisfying the two conditions in Theorem 1.

4. Example—an asset traded on two markets

In this section we shall present an example to illustrate the theoretical development of the previous sections. Fig. 2
displays the results of matlab simulations1 for this example. Each panel in Fig. 2 shows two asset prices p1 and p2, defined
in Eq. (10) below, as solid lines. The single dashed line represents the current asset value, where applicable.

As a generalization of the simple ‘‘law of the market’’ [12], in this section we shall consider the following two-exchange
market model (3) for the price p(t) of asset A:

d
dt


p1(t)
p2(t)


=


−a1 a1
a2 −a2

 
p1(t)
p2(t)


+


b1 0
0 b2

 
u1(t)
u2(t)


+


N1(t)
N2(t)


(10a)

p(t) =
 1
2

1
2

 
p1(t)
p2(t)


, t ≥ 0 (10b)

with p1(0), p2(0) ∈ R. Here p1(t) and p2(t) denote the prices of A at exchanges 1 and 2, respectively, at time t . By Eq. (10b),
the true price p(t) of A is defined as the average of them. The effect of noise traders to the two exchanges are denoted by
N1 and N2.

The parameters a1 > 0 and a2 > 0 in Eqs. (10) can be used to model arbitrage trading and open orders existing at the
exchange: If (say) p1(t0) < p2(t0), for some t0 ≥ 0, then p2(t) tends to decrease and p1(t) tends to increase for t > t0, as
long as there is no net demand–supply (i.e. u1 ≡ u2 ≡ 0). The speed at which this occurs depends on a1 and a2. Fig. 2 (Top
Left Panel) illustrates this convergence of market prices. Note that if either ui, i = 1, 2, is not uniformly zero, then there is
no intrinsic guarantee that |p1(t) − p2(t)| → 0 as t → ∞; we need arbitrage traders’ input to achieve this (see below).

The parameters b1 > 0 and b2 > 0 in Eqs. (10), on the other hand, depend on the liquidity of A: Since ui(t) is the net
demand–supply for A at exchange i at time t , a larger bi implies a larger change in price for a given fixed nonzero ui(t).

The market model (10) will naturally result in a constant price, i.e. p(t) → p∞ ∈ R as t → ∞, whenever there is no net
demand–supply. This system is therefore unstable in the sense that any bounded nonzero net demand (u1 > 0 and u2 > 0)
will result in an unbounded asset price as t → ∞. The model-based traders, defined below, must act to stabilize system,
for otherwise a bounded value reference may lead to an unbounded asset price—an asset value bubble.

1 The corresponding matlab code is available from the author.
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Fig. 2. Top left:Marketmodel in the absence of inputs—prices at the two exchanges converge. Top right: Simple feedback traders (13) can adapt to changes
in the known value. Bottom left: Simple feedback traders (13) with unknown value and noise trading (divergence). Bottom right: An efficientmarket—price
tracks value even if it is unknown, and even if there are model uncertainties and noise traders.

Let us first consider a scenario where there are only two traders; one trading at each of the exchanges. We impose the
following specification (4) for these traders (this analogous to the technical traders discussed in Ref. [18]):

d
dt


x1(t)
x2(t)


=


ac11 ac12
ac21 ac22

 
x1(t)
x2(t)


+


ki1 0
0 ki2

 
y1(t)
y2(t)


(11a)

u1(t)
u2(t)


=


1 0
0 1

 
x1(t)
x2(t)


+


kp1 0
0 kp2

 
y1(t)
y2(t)


(11b)

yj(t) = p(t) − v(t), j ∈ {1, 2}. (11c)

Here the value v is assumed to be known. If each acij = 0, then Eqs. (11) reduce to the technical traders in Ref. [18, Result
1]. However, nonzero values for acij allow us to model trader learning and herding, i.e. interdependence of the two traders’
decisions.

We shall consider the following simple dynamical system for asset value generation:

ẇ(t) = 0, t ≥ 0, w(0) ∈ R (12a)
v(t) = qw(t), t ≥ 0, q > 0. (12b)

Clearly any constant value v can be generated by using the system (12), and this is (isomorphic to) the simplest possible
dynamical system for generating any constant signal [11]. Initially we assume that, in Eq. (12b), q is known, but that
assumption will be relaxed later.

For the sake of a numerical example, let us specify ac11 = ac12 = ac22 = ki2 = kp1 = 0, ac21 = 0.3, ki1 = −2, k2p = −1.
Then Trader 1 employs a value strategy taking into account the past history [18], and Trader 2 is only considering the current
price–value relationship but adapts his/her decisions to those of Trader1:

u1(t) = c1 − 2
 t

0
(p(s) − v(s))ds, t ≥ 0, c1 ∈ R (13a)

u2(t) = c2 + 0.3
 t

0
u1(s)ds − (p(t) − v(t)), t ≥ 0, c2 ∈ R. (13b)

It is easy to verify that this arrangement results in a stable closed loop system. Furthermore, if there are no noise traders,
i.e. if N1(t) = N2(t) = 0 for each t ≥ 0, then the market price (10b) automatically adapts to each change of value during a
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tâtonnement process; see Fig. 2 (Top Right Panel). However, this market is not efficient in the sense of Definition 5. In fact,
we only have to introduce noise traders via a nonzero N(t) = Pw(t), with P =


0.5 0.3

T . The resulting price trajectories
at the two exchanges for a constant v(t) are shown in Fig. 2 (Bottom Left Panel). Clearly their average differs from the value
v(t).

We will conclude this example by showing a scenario where this market becomes efficient in the sense of Definition 5.
Indeed, for the trader arrangement presented below, the price tracks any value as |p(t) − v(t)| < Me−at for someM, a > 0
and all t ≥ 0 regardless of the initial state of the market and the model-based traders. Furthermore, this occurs in the
presence of arbitrary noise traders (i.e. for any P ∈ R2), under uncertainty in the market model parameters (10), and in
the absence of accurate knowledge of true value (12b). The traders will be arranged such that they, as a group, attempt to
estimate the current state of the following system describing the interaction of the market (10) and the noise traders:

d
dt


z(t)
w(t)


=


A P
0 0


+


B
0


u(t) (14a)

y(t) =

C −Q

 
z(t)
w(t)


(14b)

where A, B, C, P and Q can be uncertain. Let Π and Γ be matrices satisfying the so-called regulator equations (cf. Ref. [11])
AΠ + BΓ + P0 = 0 and CΠ −Q0 = 0 for some nonzero P0,Q0. Then choose matrices K and L =


L1 L2

T such that L2 ∈ R

is nonzero, A + BK is stable and such that

A P0
0 0


− L


C −Q0


is stable. Finally specify Ac, Bc, Cc and Dc as follows:

Ac =


A + BK − L1C P0 + B(Γ − KΠ) + L1Q0

−L2C L2Q0


, Bc =


L1
L2


(15a)

Cc =

K Γ − KΠ


, Dc = 0. (15b)

It can be shown (see e.g. Ref. [11, Theorem 4.15]) that the closed loop system matrix (8) is in this case similar to an upper
triangular block matrix with A + BK and


A P0
0 0


− L


C −Q0


on the diagonal. Thus the closed loop is stable. Further, it

can be shown using the technique of proof of Lemma 6.52 in Ref. [11] that the traders, as a group, incorporate an internal
model of the value process (12). Finally, as long as C̃ and Q̃ are chosen such that the traders can identify any mispricing in
the asset value (e.g. C̃ = rC and Q̃ = rQ for some nonzero r ∈ R which need not be known), the conditions of Theorem 1
hold. Fig. 2 (Bottom Right Panel) shows the trajectory of a sample simulation whereby price tracks value in the presence of
noise and parameter uncertainty.

One should bear inmind that the above trader specification (15) alone does not guarantee that the priceswould converge,
i.e. |p1(t)−p2(t)| → 0 as t → ∞, even if their average tracks any value as demonstrated above. Naturally, one can augment
the trader model (15) with additional arbitrage traders driven by y(t) = p1(t) − p2(t), such that their corresponding value
reference is zero, to accomplish this.

5. Discussion, conclusions and suggestions for future work

In this article we have developed a feedback control model for efficient financial markets. We have shown that in this
model, market efficiency – whereby price tracks any value, at an exponential rate, in the presence of uncertainties (typically
of small magnitude) and noise (of arbitrary magnitude) – is equivalent to the traders’ aggregate ability to identify asset
mispricings and their aggregate behavior incorporating an internalmodel of the value process dynamics.We have illustrated
this result by means of an extensive example. To our knowledge, the price discovery model presented in this article is new,
and the proof of the main result appears to be new also in the realm of robust automatic control theory.

The Efficient Market Hypothesis has been criticized for the fact that, in its strongest form, it implies perfectly rational
market participants, and that new information should be immediately reflected in asset prices. Our formulation of efficient
markets, in contrast to this, specifically avoids any assumption of investor rationality, and we also allow for a gradual value
discovery upon news. In particular, we have allowed some investors to be irrational and studied price–value discovery in
the presence of such irrational investors and in the presence of model uncertainty. Our main result shows a necessary and
sufficient arrangement of traders for market efficiency, assuming that there is no bubble in the asset price. We believe
that the significance of this result then lies in the new directions it may provide for studying validity – or the sources of
breakdown – of EMH in practice. This can take place not only by studying the conditions of Theorem 1 in practice, but also
by applying control-theoretical results in this field. Among several others we mention Maithripala et al. [24] who studied
the implications of loss of robust regulation.

Theworkpresented in this paper ismostly theoretical, but it is also possible to study the validity of ourmodeling approach
in practice. Indeed, one can use standard system identification techniques from control theory to determine whether or not
any of the typical linear regulator descriptions is adequate formodeling trader behavior in the vicinity of value changes, such
as earnings announcements. We expect to report such results in the future. Another important topic for future research is
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to study how the conditions for market efficiency presented herein may arise as a consequence of agent-based optimization
and other essential elements of value formation.

The model presented in this article is, of course, by no means all-inclusive. Although our model allows for parameter
uncertainty, it is based on linear dynamics and its structure is fixed in the sense that all the feedback interconnections are
explicitly specified. In practice, there may be more elaborate (even time-dependent) interconnections between the blocks
of the feedback loop model. The study of such systems is an important topic for future work. Furthermore, the market
efficiency concept studied in this article relies on the stabilizability of the closed loop system (i.e. the NBC). In practice, there
are additional constraints not considered here, such as finite capital requirement, that restrict the magnitude of the control
action u(t). Achieving closed loop stability in such circumstances is a non-trivial task and an important consideration for
future work.

Another valid – albeit somewhat philosophical – point of criticism towards the results of this article is the existence
and uniqueness of asset value: In practice, asset value can be subjective, and it is usually assumed to be the end result
of the auctioning process (as in general equilibrium models). We point out that, while we do assume the existence and
uniqueness of value, in our framework individual traders do not have know it for the market to be efficient. Instead, in our
model, traders base their trading decisions on value estimates, whichmay reflect the aforementioned subjective biases. This
discussion nonetheless alsomerits further attention in future research.We conclude by emphasizing thatmany authors, e.g.
Refs. [18,19] have studied particular examples of the general feedback arrangement proposed in this article; we havemerely
extended those examples into amore general frameworkwhich allows for a study of conditions leading tomarket efficiency.
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Appendix. Proof of the main result

We first prove the necessity of the given conditions for market efficiency.
Assume that ΛS = AcΛ + Bc∆ for some linear maps Λ : W → X and ∆ : W → Y. Since the market is efficient for

arbitrary P and Q̃ , the necessary existence of a readability map Ko : Y → R such that C = KoC̃ and Q = KoQ̃ now follows
immediately from Ref. [25, Theorem 1]. Since P and Q̃ are arbitrary, we can let Q̃ = ∆ and P = BDc Q̃ + BCcΛ. Now let K be
any matrix satisfying the conditions (7). Then Q = KQ̃ , and it remains to be shown that K∆ = 0.

Define P =

BCcΛ Bc∆

T . Since the spectra of AL and S are disjoint, there exists a unique matrix Π =

Π1 Π2

T
:

W → Z × X satisfying the Sylvester equation

ΠS = ALΠ + P . (A.1)

A direct calculation shows that the unique solution is given by Π1 = 0 and Π2 = Λ.
Now let Θ(t) =


z(t) x(t)

T , the state of the closed loop system, which, for the above choices of P and Q̃ , is described
by the following set of equations:

Θ̇(t) = ALΘ(t) + Pw(t), ∀t ≥ 0, Θ(0) ∈ Z × X (A.2a)
ẇ(t) = Sw(t), ∀t ≥ 0, w(0) ∈ W (A.2b)

e(t) =

C 0


Θ(t) − Qw(t) ∀t ≥ 0. (A.2c)

Since Condition 1 of Definition 5 is assumed to hold for all z(0) ∈ Z, x(0) ∈ X and w(0) ∈ W , we can in particular choose
z(0) = 0 and x(0) = Λw(0). Then it is easy to see (see e.g. Ref. [11, Theorem 6.20]) that

Θ(t) = eALt

z(0)
x(0)


− eALtΠw(0) + ΠeStw(0) (A.3)

= eALt


0
Λw(0)


− eALt


0

Λw(0)


+ ΠeStw(0) (A.4)

=


0
Λ


eStw(0) (A.5)

so that for these initial conditions

|e(t)| = |Qw(t)| = |K1eStw(0)| ≤ Me−at
∀t ≥ 0. (A.6)

By the assumptions for S this can only be true if K∆ = 0. This completes the proof of necessity of conditions.
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As for sufficiency of the given conditions for market efficiency, let P be arbitrary and let Q̃ be arbitrary such that (7)
holds for some readability map K (it exists by assumption). Define P =


P − BDc Q̃ Bc Q̃

T
. We will show that e(t) =

Cz(t) − Qw(t) decays exponentially independently of the initial conditions in the presence of parameter uncertainties.
Introduce additive perturbations to the matrices in Ω such that Ap

= A + ∆A, Bp
= B + ∆B, Cp

= C + ∆C , C̃p
=

C̃ + ∆C̃ Cp
c = Cc + ∆Cc ,D

p
c = Dc + ∆Dc , where by assumption Cp

= KC̃p, and all perturbations are small enough to retain
closed loop stability. Then, again, there exists a unique matrix Π =


Π1 Π2

T
: W → Z × X satisfying the Sylvester

equation (A.1) for the perturbed loop matrix Ap
L . Working this out yields

Π1S = (Ap
+ BpDp

c C̃
p)Π1 + BpCp

c Π2 + P − BpDp
c Q̃ (A.7)

Π2S = AcΠ2 + Bc(C̃pΠ1 − Q̃ ) (A.8)

so that 0 = K(C̃pΠ1 − Q̃ ) = CpΠ1 − Q by the assumption of an internal model.
Similarly as in the above, for any z(0) ∈ Z, x(0) ∈ X and w(0) ∈ W we have:

z(t)
x(t)


= eA

p
L t


z(0)
x(0)


− eA

p
L tΠw(0) + ΠeStw(0) (A.9)

so that

e(t) =

Cp 0


eA

p
L t


z(0)
x(0)


−


Cp 0


eA

p
L tΠw(0) +


Cp 0


ΠeStw(0) − QeStw(0) (A.10)

= f (t) + (CpΠ1 − Q )eStw(0) = f (t) + K(C̃pΠ1 − Q̃ )eStw(0) = f (t) (A.11)

for some function f (·), which decays exponentially by the stability of Ap
L . This completes the proof.
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