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Fig. 6(b). Point-fixed glazing system: axonometric, scale 1.

Fig. 6(c). Point-fixed glazing system: axonometric, scale 2.

supporting system, the static analysis and the progressive
morphological subdivision of the structural components are
important parameters in the generation of self-similarity. The
dimensions of the various lines, as they are computed by the
program, can be used in practice as dimensions of the various
components of the structural system.

In order to examine whether the idea of the creation of
an organized hierarchical process, by the use of the point
fixed glazing systems, is possible in practice, an algorithm has
been created that simulates an existing structure with a fractal
hierarchy in its supporting system: the façade of a Serre at
La Villette by P. Rice in Paris. The structural system of this
building can be used as a model, and be applied to the shells,
which are described further, or to other similar ones, Figs. 6(b)
and 6(c) [25].

Therefore, these examples exploit a new design technique,
which applies the idea of fractal geometry in 3-d structures.
The geometrical configuration, the structural morphology and
the hierarchical subdivision of the support system generate a
new architectural expression [25–27].
Fig. 7(a). Elliptic paraboloid.

4. The elliptic paraboloid and hyperbolic paraboloid
shapes

To generate computerized fractal forms, geometric shapes
have been used as a basis. Such examples are the elliptic
paraboloid (e.p.) and the hyperbolic paraboloid (h.p.) shapes,
Figs. 7(a) and 8(a) respectively. They are based on the following
mathematical relations.

The e.p. and h.p. for the Euclidian space E3 are respectively
described by

Elliptic paraboloid :
x2

a2 +
y2

β2 − 2z = 0, (5)

Hyperbolic paraboloid :
x2

a2 −
y2

β2 − 2z = 0. (6)

The Cartesian coordinates x and y for a point on the surface of
the e.p. or h.p., at a level

z = z0 are given as

x = α j cos(θ · i) and (7)

y = β j sin(θ · i). (8)

where i = 1, 2, . . . Num Points, and θ is the angle of rotation
around the axis zz′

[0◦, 360◦
], which depends on the number of

points (Num Points) the user gives along a ring. A ring is every
level z that subtracts, from the surface of the e.p. or h.p., a curve
of the Euclidian space E3. The user gives the number of rings
(Num Rounds)

θ =
2π

Num Points
or θ =

360◦

Num Points
. (9)

The coefficients α j and β j represent the axes of the ellipse. The
following relations give their values

α j = α
j

Num Rounds
(10)

β j = β
j

Num Rounds
, (11)

where j = 1, 2, . . . Num Rounds
and α, β are the axes of the ellipse of the biggest ring, because
for
j = Num Rounds then α j ≡ α and β j ≡ β.
In the program, α is the value of Big Axial-A, and β is the value
of Big Axial-B.
By substituting relations (9) and (10) into relations (7) and (8),
the following coordinates are obtained

x = α ·

(
j

Num Rounds

)
· cos (θ · i) , (12)
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Fig. 7(b). Elliptic paraboloid with wave.

Fig. 8(a). Hyperbolic paraboloid.

y = β ·

(
j

Num Rounds

)
· sin (θ · i) , (13)

z = z0. (14)

The level z is written as

z = A

(
x2

a2 +
y2

β2

)
2

, for the e.p. and (15)

z = A

(
x2

a2 −
y2

β2

)
2

, for the h.p. (16)

The coefficient A is given by

A = B
√

a2 + β2, (17)

where B is the scale factor of the axis zz′ that produces different
levels for the same axes α and β.

The complexity of the model can be increased if a variable
equation is added in order to give a wave form along the
axis zz′. The simple e.p. and h.p., Figs. 7(a) and 8(a), are
transformed to fractal forms by the introduction of the angle
of the wave. The height of the wave depends on the distance of
the wave from the centre of the ellipse and on the number of
periods along the axis of the ellipse, Fig. 7(b), 8(b) and 8(c).
These shapes are similar to the waves created in water when a
stone is thrown.

In this case, Eq. (17) is written as

A = B
√

a2 + β2 sin(φ · j), (18)

where j = 1, 2, . . ., Num Rounds.
Angle φ depends on the number of rings (Num Rounds) and

on the number of periods (Num Periods) the user chooses to
Fig. 8(b). Hyperbolic paraboloid with wave.

Fig. 8(c). Hyperbolic paraboloid with wave — Front view.

have along the total number of rings. Above every 2-rings of the
original mesh, a parameterized height is added. These heights
vary according to the following function:

φ =
2π · Num Periods

Num Rounds
. (19)

The coordinates x , y, z are obtained by combining Eqs.
(12)–(18)

x = α ·

(
j

Num Rounds

)
· cos (θ · i) , (20)

y = β ·

(
j

Num Rounds

)
· sin (θ · i) , (21)

z = B ·

√
α2 + β2 ·

(
j

Num Rounds

)2

·

(
1
2

)
· sin (φ · j) ,

for the e.p. (22)

or

z = B ·

√
α2 + β2 ·

(
j

Num Rounds

)2

·

(
cos2 (θ · i) − sin2 (θ · i)

2

)
· sin (φ · j) , for the h.p.,

where i = 1, 2, . . . Num Points, j = 1, 2, . . . Num Rounds.

5. A tree on the surface of an elliptic paraboloid

In this section, the structural and geometrical transformation
of the surface of an elliptic paraboloid based on a tree fractal
configuration [28], Fig. 9, is studied. The evolution of the tree
system generates two different models, depending on the rule
that is applied for the development of the model. So e.g. factor
2∗ (relation (28)) and factor 2+ (relation (29)) give different
results, as shown in Figs. 10 and 11 respectively. In order
to produce the design representations of these 3-d shells, the
following rules and mathematical formulas have been used:

As it has been described in the previous section, the elliptic
paraboloid scheme is given by Eq. (5). On the above surface,
a suitable number of points are chosen, so that a tree form
is produced. To achieve this, the coordinates of the elliptic
paraboloid are estimated in relation to the angle of rotation
θ around the axis z, Eq. (9), and the number of levels z.
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Fig. 9. Generation of the tree fractal.

Fig. 10(a). Tree on the surface of an elliptic paraboloid. Model of geometrical
progression.

Fig. 10(b). Tree on the surface of an elliptic paraboloid. Model of geometrical
progression — Front view.

The Cartesian coordinate z, that represents each time one ring
(level z), is parameterized according to the number of rings
(Num Rounds) the user instructs the algorithm to develop, and
is estimated by the paraboloid equation

z = a · x2
+ b · x + c,

where x ≡ i = 1, 2, . . . , Num Rounds. (23)

The user has to select the appropriate values for the coefficients
a, b and c.

For a given value of the coordinate z (level z), which has
been estimated by Eq. (23), and according to the equation of
the elliptic paraboloid, Eq. (5), the parametric equations of the
Cartesian coordinates x and y result in

x = αz cos(θ · j) and (24)
Fig. 11(a). Tree on the surface of an elliptic paraboloid. Model of arithmetical
progression-Axonometric, view 1.

Fig. 11(b). Tree on the surface of an elliptic paraboloid. Model of arithmetical
progression-Axonometric, view 2.

Fig. 11(c). Tree on the surface of an elliptic paraboloid. Model of arithmetical
progression — View from below.

y = βz sin(θ · j), (25)

where j = 1, 2, . . ., Num Points.
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On both the above relations, parameter θ is given as
previously, Eq. (9).

The coefficients αz and βz represent the axes of the ellipse.
Their values are given by the following functions

αz = α ·
√

2 · |z| and (26)

βz = β ·
√

2 · |z|, (27)

where αz and βz are the axes of the ellipse of the ring whose
|z| = 1/2, and thus αz = α and βz = β. In the program, α

is the value of Big Axial-A and β is the value of Big Axial-B,
which are chosen by the user.

The user has also to select the “number of points on each
ring”. This parameter is different for each ring (level) and
different models can describe the method of transformation. In
the present case, the following models are chosen:

5.1. Model of geometrical progression, Figs. 10(a) and 10(b)

Num Points(i + 1) = 2∗Num Points(i), (28)

where i = 1, 2, . . ., Num Rounds, with the following initial
values

Num Points(0) = 1 and Num Points(1) = 2.

5.2. Model of arithmetical progression, Fig. 11

Num Points(i + 1) = 2 + Num Points(i), (29)

where i = 1, 2, . . ., Num Rounds, with the following initial
values

Num Points(0) = 1 and Num Points(1) = 2.

The coordinates x , y, z are obtained by combining Eq. (5) with
Eqs. (24)–(27) and the following Eq. (32)

x = α ·

√
2 · |a · i2 + b · i + c| · cos

(
2π

Num Points
· j

)
, (30)

y = β ·

√
2 · |a · i2 + b · i + c| · sin

(
2π

Num Points
· j

)
, (31)

z = a · i2
+ b · i + c, (32)

where i = 1, 2, . . ., Num Rounds and j = 1, 2, . . .,
Num Points.

Fractal geometry is observed in the tree form of the surface.
The more the number of rings is increased, the more subdi-
visions and points on each ring are taken (either by geomet-
rical progression or by arithmetical progression). In Fig. 10,
the number of points in each level is twice the number
in the previous level. The triangles are similar in each
level, and they can be either glass panels, or other mate-
rials with a steel frame system, or they can represent a
reticulated supporting system as a point-fixed glazing sys-
tem with cables. It must be noted that the model of geo-
metrical progression is morphologically better than the model
of arithmetical progression. The complex scheme of Fig. 11
could be a basis for a spiral building.
6. Conclusions

The new geometry, the geometry of Nature, has opened
new routes in science, economics, urban-planning, biology
etc. This geometry has recently influenced architecture also.
The proposed computational method produces algorithms
using fractal mathematics, and can generate forms applicable
to shells. Modern building technology can support such
applications, e.g. it has been applied for the construction of
the glass roof of the atrium in the British Museum, where
each different node and bar was constructed according to the
dimensions given by a computer program [20].

Considering the development of recent technologies in
design and building construction, and the introduction of
complex new forms in the architectural design, a new
architectural mode of expression is generated.

This new morphology is produced digitally, according to
the algorithmic potential of software programs, the structural
performance of the building materials, the support systems and
users’ demand. The applications of this method are unlimited,
given the enormous capacities of computer technology, and the
possibilities for form generation are stretched far beyond the
limits of purely manual techniques. They are variable, since
they are used either for the whole building design or for parts
of the construction, e.g. the roof or the profile of a wing, the
roofs of atria, the cladding of a façade, or space installations like
pavilions, shelters, tents, domes etc., and in large-scale planning
like the design of a plaza or small-scale design like the pattern
of a pavement.

Therefore, this idea is used for further improvement of the
design of shells and other larger scale projects that arise in
architecture or the engineering sciences. The benefit of such an
approach is that when an algorithm is suggested for a structure,
then the whole project is analysed and determined in such a
way that every rule it contains can be fully described — for
example, the coordinates of each node, or the dimensions of
each bar. The result is a spatial structure providing a system
with technological coherence and aesthetic value, rather than
merely an interesting prototype. The challenge for the architects
and the engineers is to be inspired by the computer results,
either by simplifying the undesirable complexity involved, or
by using in their design small parts of the whole computer
product, applicable in real projects, that can be realised using
new materials and modern structural technology.
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