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Nonparametric Identification of
Nonlinear Systems in Series

Antonin Novak, Balbine Maillou, Pierrick Lotton, Laurent Simon, Member, IEEE

Abstract— In this paper, a method allowing the identification
of two nonlinear systems in series is presented. More precisely,
the identification of the second nonlinear subsystem under test
is achieved by considering the effects of the nonlinearities of the
first subsystem. The method is based on the estimation of the
higher harmonic frequency responses from the measurement of
distorted input and output signals. The second nonlinear system
is then modeled by nonparametric generalized Hammerstein
model made up of power series associated with linear filters. The
method is experimentally validated in the well-known framework
of nonlinear propagation of acoustic waves.

Index Terms— Frequency response, generalized hammerstein
model, higher Harmonic identification, nonlinear system, nonlin-
ear systems in series.

I. INTRODUCTION

ALMOST all real-world systems exhibit nonlinear behav-
ior to varying degrees and must be described using a

nonlinear model. For such nonlinear systems, the Volterra
series representation is usually considered as an effec-
tive model and its use in nonlinear system identification
and analysis has become widespread from the early 1980s
[1]–[3]. Nevertheless, the Volterra model lays down the
calculation of multidimensional kernels and most applica-
tions are limited to the second or the third order, because
of analytical difficulties and computational cost. Simplified
Volterra-based models, namely Hammerstein model (N-L),
Wiener model (L-N), Hammerstein-Wiener cascade (N-L-N),
or Wiener-Hammerstein cascade (L-N-L), are then often
preferred in the case of open-loop systems, because of their
simpler structure and lower computational cost. Furthermore,
for a better accuracy of the estimation, these simple models
can be extended to so-called generalized models, such as
the generalized Hammerstein model, as shown in Fig. 1, in
the case of a single-input single-output (SISO) system. This
generalized Hammerstein model is made up of N parallel
branches, with each branch consisting of a linear filter Gn( f )
preceded by a nth order power static nonlinear function, for
n = 1, N .

The identification of a nonlinear system using a generalized
Hammerstein model consists in estimating the unknown linear
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Fig. 1. Generalized Hammerstein model of a SISO system.

filters Gn( f ) from the known input and output signals x(t)
and y(t), respectively. Most of identification methods of
Hammerstein or Wiener systems are based on parametric mod-
els [4], which means that each unknown linear filter Gn( f )
is modeled by a parametric frequency response function
model such as ARMA structure. However, a nonparametric
method based on exponential swept-sine input signal x(t) and
nonlinear convolution has been proposed in [5] and [6] for the
estimation of the modulus |Gn( f )|, and recently extended to
the estimation of both the modulus and the phase of Gn( f )
through the synchronization of the excitation swept-sine signal
[7], [8]. This method, called synchronized swept-sine method
in this paper, has been successfully applied to the study of
various nonlinear systems [8]–[10].

However, for experimental situations, where a physical
source (sound, light, vibration, etc.) is driven by a swept-
sine input signal for exciting the system under test (SUT),
the unwanted nonlinearities of the source will be mixed with
the nonlinearities of the SUT to be estimated. Then it might be
of great interest to model the whole system (source + SUT) as
two nonlinear dynamic systems in series, to be able to estimate
independently each physical subsystem.

This paper consequently aims at developing a method allow-
ing the identification of the nonlinear SUT without taking into
account the effects of the nonlinearities of the first subsystem.
Recently, Ege et al. [11] have proposed such a method for the
estimation of the nonlinearities of a piano soundboard, when
the soundboard is acoustically excited with a loudspeaker.
As both the source and the soundboard are nonlinear, the char-
acterization of the piano soundboard requires measurements of
both the distorted pressure generated by the loudspeaker and
the local acceleration of the soundboard. The method presented
by Ege et al. then allows the estimation of the distortion rate
of the soundboard only, but does not allow to identify the
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Fig. 2. Two dynamic nonlinear systems in series.

Fig. 3. Two dynamic nonlinear systems in series, the second one being the
SUT, represented using a generalized Hammerstein model.

different contributions of the nonlinearities of the SUT.
In this paper, an off-line method allowing the identification

of the second subsystem of two nonlinear systems in series is
presented. This method is based on the estimation of the higher
harmonic frequency responses (HHFRs) [9]. In Section II, the
principle of the method is detailed. In Section III, the method
is experimentally validated in the well-known framework of
nonlinear propagation of acoustic waves. Finally, conclusions
are presented in Section IV.

II. METHOD

Consider two SISO stable, time-invariant nonlinear systems
(NLS) connected in series in an open loop, as shown in Fig. 2.

The signal x(t) is the input of the first NLS. The signal u(t)
is the output of the first NLS and the input of the second NLS.
The signal y(t) is the output of the second NLS. Consequently,
y(t) may be seen as the output of the whole system for the
input signal x(t). Lastly, it is supposed that these three signals
are available for the analysis.

The method presented here then allows the identification
of the second NLS. Adding to the assumption that both
subsystems are in series without any feedback (open-loop
systems), as shown in Fig. 2, we suppose in the following that
the first NLS belongs to the period-in-same-period-out class of
systems [4], and that the second NLS may be described by a
N th-order generalized Hammerstein model, as shown in Fig. 3.

The identification of the system is then equivalent to esti-
mating the linear filters Gn( f ), n = 1, N , from the measured
signals u(t) and y(t), the input signal x(t) being known. The
identification process is based on the off-line estimation of
both the HHFRs H(u,x)

l ( f ) between x(t) and u(t), and the
HHFRs H(y,x)

l ( f ) between x(t) and y(t), for l = 1, L.
We recall that, given an input signal a(t) and an output

signal b(t) of a NLS, the HHFR H(b,a)
l ( f ) may be seen as the

contribution, in both amplitude and phase, of the lth harmonic
at the output, for a sine at frequency f at the input, as

H(b,a)
l ( f ) = |H(b,a)

l ( f )|e jϕ(b,a)
l ( f ). (1)

Therefore, the HHFRs can be interpreted as frequency
responses of fundamental and higher harmonics [9]. Several
methods have been developed to estimate the HHFRs. The
most intuitive but time consuming one is based on an harmonic
excitation of the SUT and the process is repeated by changing
the input frequency step by step. In [12], two methods have
been proposed, the first one being based on FFT techniques to
estimate the autospectrum and phase information of HHFRs
and the second one using IQ demodulation. In this paper,
the so-called synchronized swept-sine method [9] is used to
estimate the HHFRs, but any other technique allowing the
estimation of H(y,x)

l ( f ) and H(u,x)
l ( f ) in both amplitude and

phase can be used. The method we propose also involves
estimating the HHFRs H(un,x)

l ( f ) of powers of the signal
u(t), for n = 1, N , corresponding to each polynomial input
of the generalized Hammerstein model describing the second
NLS. The signal u(t), already distorted by the first nonlinear
subsystem NL1, is then taken to the power of n to estimate
the HHFRs H(un,x)

l ( f ).
The HHFRs H(y,x)

l ( f ) of the output signal y(t) result in the
combination of all HHFRs H(un,x)

l ( f ) after filtering by filters
Gn( f ). As detailed in Appendix A, the relation between the

HHFRs H(un,x)
l ( f ), H(y,x )

l ( f ), and the linear filters Gn( f )
can indeed be written in a matrix form as⎡

⎢⎢⎢⎢⎣

H(y,x)
1 ( f )

H(y,x)
2 ( f )

...

H(y,x)
L ( f )

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

H(u,x)
1 ( f ) H(u2,x)

1 ( f ) · · · H(uN ,x)
1 ( f )

H(u,x)
2 ( f ) H(u2,x)

2 ( f ) · · · H(uN ,x)
2 ( f )

...
...

. . .
...

H(u,x)
L ( f ) H(u2,x)

L ( f ) · · · H(uN ,x)
L ( f )

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

G1( f )
G2( f )

...
GN ( f )

⎤
⎥⎥⎥⎦ . (2)

Equation (2) can then be solved for unknown Gn( f ) by
a square matrix inversion in the case L = N , or using a
pseudoinversion in the case L > N . The number of harmonics
L chosen for the estimation of HHFRs must be equal or
greater than the number of the branches N of the generalized
Hammerstein model. The matrix (pseudo)inversion must be
computed for each frequency f separately. Nevertheless, for
frequencies corresponding to weak values of the output u(t)
of the first nonlinear system, the matrix L × N may be ill
conditioned. This can lead to meaningless solutions. Conse-
quently, the values of H(u,x)

l ( f ) have to be calculated first to
achieve a good matrix conditioning. Appendix A details the
method when exciting the two nonlinear systems in series by
a sine wave of frequency f0.

III. VALIDATION ON AN ACOUSTIC WAVEGUIDE

A. Experimental Setup Description

To illustrate and validate the method described in the
previous section, a particular case of two nonlinear systems
connected in series is considered here. It consists of a com-
pression driver exciting an acoustic waveguide as shown in
Fig. 4.
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Fig. 4. Two real-world dynamic nonlinear systems in series.

Fig. 5. Schematic representation of the experimental setup.

A high-level excitation voltage is supplied to the driver so
that the behavior of the driver is supposed to be nonlinear. The
driver generates a high-level acoustic signal at the input of the
waveguide so that a nonlinear acoustic propagation occurs in
the waveguide. Nonlinear acoustic propagation caused by a
high-level source can lead to shock wave for long distance
propagation [13]. Indeed, local small nonlinear perturbations
of the acoustic wave owing to high sound pressure level
are cumulative along the propagation and may distort the
waveform considerably for sufficiently large source-to-receiver
distances. Nevertheless, interest is focused here on a shorter
distance, leading to the observation of weak nonlinear distor-
tion, mathematically described by Burgers’ equation [14], as
summarized in Appendix B.

In addition to this weak nonlinear distortion, the acoustic
pressure generated at the input of the waveguide is distorted,
because of the nonlinear behavior of the driver, in such a
way that the acoustic pressure propagating in the waveguide
contains additional nonlinear components. Identification of the
nonlinearities solely owing to nonlinear propagation in the
waveguide is then carried out, using the identification method
presented in the previous section. The experimental setup is
shown in Fig. 5.

The setup is made up of a cylindrical air-filled tube (6-m
long and 58-mm internal diameter) coupled to a compression
driver (JBL model 2446H) at one of its ends. The other end
of the tube is loaded by an absorbing termination in order
to avoid sound reflections. The input signal x(t) is a swept
sine satisfying the conditions required for the synchronized
swept-sine method, as detailed in [7]. Two microphones M1
and M2 (acceleration compensated piezoelectrical gauges PCB
M116B) are flush mounted on the pipe wall. The first one is
set at 20 cm from the source, whereas the second one is set
at the distance of 4.2 m from the source. In this experiment,
the first NLS consists of the power amplifier, the compression
driver and the part of the guide between the driver and the first
microphone. The second NLS is the part of the guide between
the two microphones.

Fig. 6. HHFRs |H(u,x)
l ( f )| at the first microphone location. Only the first,

second, and third HHFRs are plotted.

Pressure level provided by the driver at the input of the
tube is chosen to be high enough for exhibiting weakly
nonlinear acoustic propagation. In this experiment, the RMS
pressure is 650 Pa. Measurements are performed from
300 to 5000 Hz and sampling frequency is set to 96 kHz. For
this frequency range, the absorbing termination is efficient, so
that the outgoing wave reflected from the end of the tube is
negligible. Thus, the identification results should be compared
with the nonlinear traveling plane wave theory, based on
Burgers’ equation resolution and detailed in Appendix B.
Note that the cutoff frequency, below which the plane wave
approximation is valid, is around 3300 Hz.

B. Estimation of HHFRs

Both acoustic pressure signals u(t) and y(t) (from micro-
phones M1 and M2) are independently analyzed using the
synchronized swept-sine method, by estimating HHFRs up
to the 9th-order HHFR, with x(t) the input signal. In the
following, only the first, second, and third HHFRs are plotted
to improve readability of the graphs. In Fig. 6, the moduli
of the HHFRs H(u,x)

l ( f ) at the first microphone location
are given. Similarly, Fig. 7 shows the moduli of the HHFRs
H(y,x)

l ( f ) at the second microphone location.
Figs. 6 and 7 may be read as follows. For a sine wave excita-

tion at a given frequency f , the acoustic pressure signal under
analysis is made up of a fundamental frequency, a second and
a third-order frequency components, which amplitude level is
available at f , 2 f and 3 f frequencies, respectively.

Such representation of lth-order harmonics allows to read
easily the levels of the HHFRs, relatively to a given value of
the fundamental and consequently to evaluate the distortion,
for each input frequency.

In Fig. 6, fundamental level of first microphone acoustic
pressure signal, |H(u,x)

1 ( f )|, is quite constant, around
140–150 dBSPL over the whole frequency span. The level of
the second harmonic |H(u,x)

2 ( f )| is lower than the fundamental
one and increases slightly with frequency. |H(u,x)

3 ( f )| level is
lower than |H(u,x)

2 ( f )| except below 800 Hz input frequency,
leading to a minimum dynamic value between |H(u,x)

1 ( f )| and
|H(u,x)

3 ( f )| of 25 dB, for an input frequency of 450 Hz.
Comparing the results at both microphones locations, the

level of |H(y,x)
1 ( f )| measured by the second microphone is
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Fig. 7. HHFRs |H(y,x)
l ( f )| at the second microphone location. Only the

first, second, and third HHFRs are plotted.

Fig. 8. Generalized Hammerstein model of the nonlinear propagation in the
waveguide. Linear filters Gn( f ) are obtained from experimental data.

1 dB lower than the level of |H(u,x)
1 ( f )| measured by the

first microphone, for low frequencies. Moreover, the difference
between fundamental levels at both microphones locations
increases slightly with frequency above 2000 Hz. Both these
effects are due to viscothermal losses, which theoretically
increase with frequency [15]. Furthermore, we see in Fig. 7
that the acoustic pressure at the second microphone location
is more distorted than at the first microphone location. This
is due to the effects of nonlinear propagation: |H(y,x)

2 ( f )| and
|H(y,x)

3 ( f )| globally increase with frequency, as predicted by
the theory [16].

C. Generalized Hammerstein Model and Burgers’ Theory

From experimental signals x(t), u(t), and y(t), HHFRs
H(un,x)

l ( f ) and H(y,x)
l ( f ) are calculated, with l = 1, 9. Then,

the linear filters Gn( f ), for n = 1, 3, are estimated from
(2). They characterize the behavior of the second nonlinear
system, as far as a generalized Hammerstein model correctly
fits the nonlinear propagation in the waveguide. The HHFRs
H(y,u)

l ( f ) for a given input u(t) may then be calculated from
the identified generalized Hammerstein model as shown in
Fig. 8.

Moreover, the nonlinear acoustic propagation in the
waveguide is completely described by the theory of Burgers
detailed in Appendix B. A theoretical expression of HHFRs
for a given input pressure is then available, noted Hl( f ).

As a validation, we aim at comparing the calculated HHFRs
H(y,u)

l ( f ) from the estimated model and the theoretical

Fig. 9. Comparison between the theoretical HHFRs Hl( f ) and the esti-
mated H(y,x)

l ( f ). The nonlinearities of the first subsystem (NL1) are mixed
with the nonlinearities of the SUT (NL2).

Fig. 10. Time waveforms of the acoustical pressure captured by microphone 2
for an input signal at 1400 Hz (solid line); the theoretical time waveform
calculated using the Burgers’ theory (dashed line).

HHFRs Hl( f ). Besides, in the following we also compare
the waveforms of the measured, theoretical, and model-based
resynthesized acoustical pressures.

Two comparisons are presented here. First, in Figs. 9 and 10,
the theoretical results calculated using Burgers’ theory are
compared with the measured data including the whole system
(NL1 in series with NL2). This comparison represents a case
for which the nonlinearities of the first subsystem (NL1) are
mixed with the nonlinearities of the SUT (NL2).

In Fig. 9, the theoretical HHFRs Hl( f ) are compared
with the HHFRs H(y,x)

l ( f ) of the whole system which con-
tains information of nonlinearities of both systems NL1 and
NL2. Discrepancies between theoretical Hl( f ) and measured
H(y,x)

l ( f ) are then obvious, especially for the second and the
third HHFRs. In particular, H(y,x)

3 ( f ) overestimates H3( f ) in
the frequency span from 300 Hz up to 800 Hz, due to the
compression driver distortion contribution, as noted in Fig. 6.

Fig. 10 shows the comparison of the time waveforms of the
acoustical pressure for input signal at 1400 Hz. The theoretical
waveform calculated using the Burgers’ theory (dashed line)
clearly differs from the experimental signal captured by the
microphone 2 (solid line), the RMS error between both wave-
forms reaching 54.3 Pa because of the nonlinearities of the first
subsystem (NL1). The second comparison (Figs. 11 and 12)
shows the theoretical results calculated using Burgers’ theory
compared with the estimated model. In other words, the iden-
tification of the second nonlinear subsystem (the acoustical
waveguide) is achieved while getting rid of the effects of the
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Fig. 11. Comparison between the theoretical HHFRs Hl( f ) and the
calculated H(y,u)

l ( f ). The SUT (NL2) is estimated independently of the
nonlinearities of the first subsystem NL1.

Fig. 12. Time waveforms of the acoustical pressure for an input signal at
1400 Hz: resynthesized waveform from the estimated model (solid line); the
theoretical waveform calculated using the Burgers’ theory (dashed line).

TABLE I

NORMALIZED ROOT MEAN SQUARED ERROR El , FOR THE

FIRST AND THE SECOND CASES, RESPECTIVELY,

CORRESPONDING TO FIGS. 9 AND 11

first subsystem (the compression driver), according to (2).
In Fig. 11, the theoretical HHFRs Hl( f ) are compared with

the HHFRs H(y,u)
l ( f ) obtained from the estimated model of

the SUT (NL2). The results show that the identification of
the propagation in the waveguide (NL2) is in agreement with
Burgers’ theory, contrary to the results proposed in Fig. 9.

The same conclusion can be drawn on the basis of the
comparison of time waveforms of the acoustical pressure
(Fig. 12). The waveform (solid line) resynthesized from the
estimated model matches well with the expected theoretical
waveform calculated using the Burgers’ theory (dashed line),
the RMS error being 9.3 Pa, almost six times lower than in
the previous case.

The accuracy of the proposed identification is also
confirmed by calculating the root mean squared error El for
each HHFR H(y,u)

l ( f ) as

El =
√

1
N

∑N
k=1 (|Hl( fk)| − |H(y,u)

l ( fk)|)2

√
1
N

∑N
k=1 (|Hl( fk)|)2

for which values are given, for both cases, in Table I.

IV. CONCLUSION

In this paper, a method for the identification of two NLS in
series has been presented.

The cascade of two NLS means that the second NLS under
test is excited by a distorted signal, which is the output of the
first nonlinear subsystem. In practice, this corresponds to the
classical identification case of a SUT excited by a nonlinear
device, as a loudspeaker or a shaker.

The method proposed in this paper identifies the second
system using a generalized Hammerstein representation. On
one hand, one of the characteristics of the method is to
properly estimate the HHFRs of input and output of nonlinear
SUT. Among several available methods, the synchronized
swept-sine method has been chosen for both its rapidity and
robustness [7].

On the other hand, it is also worth noting that the method
is low time consuming. The proposed method is indeed
easy to implement and no special algorithm is required. In
addition, the method has no need for any knowledge of the
first subsystem, as far as the generalized Hammerstein model
correctly fits the nonlinear behavior of the (second) nonlinear
SUT.

The method allows in particular to regenerate an output
signal corresponding to any given input signal. Using this
property we validate the method for a theoretically very well-
known physical system, that is, the weakly nonlinear acoustic
propagation in a waveguide.

The results show good agreement between both model-
based and theoretical system outputs.

APPENDIX A

DETAILED PROCEDURE

The following example details the estimation procedure
of the unknown filters Gn( f ) when exciting the cascade of
nonlinear systems by a sine wave signal. In this example, the
nonlinear SUT (the second nonlinear system) is represented by
a third-order generalized Hammerstein model. The estimation
procedure is detailed for a frequency f0, leading to estimation
of the three unknowns G1( f0), G2( f0), and G3( f0).

First, we excite the cascade of nonlinear systems with a
sine wave signal x(t) with frequency f0, as shown in Fig. 13.
For frequency f0, the relation between the input u(t) and the
output y(t) of the nonlinear SUT can be written as

H(u,x)
1 ( f0) · G1( f0) + H(u2,x)

1 ( f0) · G2( f0)

+H(u3,x)
1 ( f0) · G3( f0) = H(y,x)

1 ( f0). (3)

This equation describes the relation between the first har-
monics of signals u(t), u2(t), u3(t), and y(t).

Next, we change the excitation frequency of the excitation
signal x(t) to f0/2 and we study what happens for the same
frequency f0 as in the previous case. This situation is shown
in Fig. 14 and leads to an equation that describes the relation
between the second harmonics of signals u(t), u2(t), u3(t),
and y(t), as

H(u,x)
2 ( f0) · G1( f0) + H(u2,x)

2 ( f0) · G2( f0)

+H(u3,x)
2 ( f0) · G3( f0) = H(y,x)

2 ( f0). (4)
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Fig. 13. Outline of the proposed method. The excitation frequency of the sine wave is f0.

Fig. 14. Outline of the proposed method. The excitation frequency of the sine wave is f0/2.

Fig. 15. Outline of the proposed method. The excitation frequency of the sine wave is f0/3.

Finally, we change the excitation frequency of the excitation
signal x(t) to f0/3 and we still study what happens for
frequency f0. This situation is shown in Fig. 15 and leads
to an equation that describes the relation between the third
harmonics of signals u(t), u2(t), u3(t), and y(t), as

H(u,x)
3 ( f0) · G1( f0) + H(u2,x)

3 ( f0) · G2( f0)

+H(u3,x)
3 ( f0) · G3( f0) = H(y,x)

3 ( f0). (5)

The system of three equations (3–5) with three unknowns
G1( f0), G2( f0), and G3( f0) can be solved. Generalizing the
number of unknowns (number of branches of the generalized
Hammerstein model) to N and the number of harmonics to L,
and repeating the procedure for all the desired frequencies f
leads to the matrix expression (2).

APPENDIX B

BURGERS’ EQUATION FOR TRAVELING PLANE WAVES

Generalized Burgers’ equation with thermoviscous losses in
the boundary layer, for a pure traveling wave is [16]–[18]

∂q+

∂σ
= q+ ∂q+

∂θ+ − T

ε

∂q+

∂θ+ ∗ 1√
πθ+ (6)

where σ = (γ +1)Mωx/(2c0), ε = (γ +1)M/2, T = Sh(1+
(γ − 1)/

√
(Pr)), ∗ being the convolution, q+ the progressive

acoustic pressure or velocity, M the acoustic Mach number,
γ the heat capacity ratio, Sh the shear number, Pr the Prandtl
number, c0 the small-signal speed of sound [16], [18], ω the
angular frequency, and θ+ = ω(t − x/c0), with t and x the
time and space coordinates, respectively.
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Equation (6) is built from an adapted method for cumulative
phenomena, the multiple scale method, which has been vali-
dated up to a distance close to the critical shock wave distance
[14]. This equation has no analytical known solution.

Solution is therefore obtained numerically in the frequency
domain using a Fourier series decomposition [17], expressed
as

q =
∞∑

l=1

(al(σ ) sin(lθ) + bl(σ ) cos(lθ)). (7)

Introducing (6) into (7) leads to the following expressions:
∂al

∂σ
= l

l−1∑
p=1

(
apal−p

2
− bpbl−p

2

)

−l
+∞∑

p=l+1

(ap−lap + bp−lbp) − T

ε

√
l

2
(albl) (8)

∂bl

∂σ
= l

l−1∑
p=1

(
apbl−p

2
− bpal−p

2

)

−l
+∞∑

p=l+1

(bp−lap + ap−lbp) − T

ε

√
l

2
(al + bl). (9)

In the frame of this paper, these Fourier series are truncated
to L harmonics, l = 1, 3. Then a resolution on σ by small steps

σ (finite difference method) knowing the initial condition
at σ = 0 is performed. Spatial step is typically here 1 cm.
The resolution method used is a prediction correction method.
At the first order, the classical Euler method is used, and
correction is performed using the Adams Moulton second-
order method.

The solution of Burgers’ equation was experimentally ver-
ified by Menguy et al. [17]. This theory serves in this paper
as a reference for testing the proposed identification method,
by deducing the theoretical moduli of HHFRs, according to

Hl =
√

a2
l (σ ) + b2

l (σ ). (10)
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