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Abstracl- A new approach is proposed for multivariable 
system identification in the deterministic model framework. In 
the proposed approach, MIMO system is represented using 
transfer function (TF) matrix whose elements arc the standard, 
fixed structure TFs like FOPDT, SOPDT etc. These model 
structures are capable of well approximating very large class of 
systems found in practice. The system identification problem is 
then considered as the problem of simultaneously estimating the 
parameters of all TFs in the TF matrix. This is posed 
mathematically as the constrained optimization problem, which 
minimizes the error between simulated and actual response. A 
genetic algorithm is used to solve the proposed optimization 
problem. The proposed approach is tested on several benchmark 
system identification test data sets. Results for two DaISy 
benchmark data sets, SISO example of flexible robGtic arm and a 
MIMO example of an industrial dryer are discussed. 
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I. INTRODUCTION 
Mathematical models are quite useful in advanced 

engineering applications for design optimization, operational 
optimization, control, and fault diagnosis etc. System 
identification deals with the problem of obtaining models from 
rp:e input output .data. The most traditional system 
identification techniques are prediction error method (PEM) 
and the instrument variable method (lVM). These methods use 
the so-called black box model structures of the canonical 
fonus e.g. ARX, ARMAX etc [1,2,7,8]. Though, these 
traditional identification techniques offer good solution to 
many real-life systems, they have certain issues like I) 
difficulty in determining the model structure, and 2) numerical 
reliability due to need of solving the multidimensional 
nonlinear optimization problem in PEM case or system of 
linear equations in IVM case [I ,2,7,8]. 

In last decade, these issues are addressed by the novel 
approach of subspace based MIMO linear state space (SS) 
model identification [5,6,7,8]. The subspace identification 
techniques have become popular because they are 
computationally fast and effective for the large dimensional 
MIMO systems. The main features of the subspace 
identification approaches are -- a) they require to determine 
only one structural parameter (state space model order) due to 
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avoidance of the canonical forms, b) they are computationally 
fast, particularly in case of large MIMO systems, c) they are 
numerically robust because they are based on the numerically 
stable and reliable QR or LQ factorization and SVD 
algorithms, instead of numerically less reliable nonlinear 
optimization algorithms, and d) they have been found to yield 
good model accuracy for large and complex interactive MIMO 
systems [5,6,7,8]. 

However, subspace based state space identification 
approach also has certain limitations: 1) Loss of physical 
insight due to the state space model, 2) requirement of large 
amount of data to obtain acceptably accurate model, 3) though 
it is beneficial that it requires only one state space model 
structural parameter, there is a lack of any well established 
rule to choose this parameter, except not-so-matured 
methodology of rank testing, 4) state space parameters depend 
on data in a rather complicated way making it difficult to 
analyze and optimize the perfonnance of the estimator, and 5) 
state spacc approach does not use quantitative optimization 
algorithms and the attempts to use optimization algorithms 
have had only limited success due to complicated mapping 
from data to estimated transfer function [9]. 

Several generic and user-friendly tools are available for 
model identification. For example, System Identification 
Toolbox of MATLAB [3,4] that contains various teclmiques 
for identifying time-series and state space, non-parametric and 
parametric models, is a popular identification tool among 
researchers and academicians. However, still such tools are 
difficult to use for process/control engineers in industry, who 
generally do not have academic training in system 
identification. Also, the practicing process/control engineers 
are more comfortable with transfer function models, in 
general. To fulfill the requirements of practicing engineers, 
recently there have been several attempts of proposing system 
identification based on the transfer function approach. For 
example, direct polynomial form of TF idcntification [11], 
using Laguerre series approximation of the transfer functions 
[12], or direct frequency domain identification [13]. 

In this paper, we propose a different approach to identify 
L TI multivariable systems in the form of MIMO transfer 
function matrix. The proposed approach not only addresses 
the aforesaid issues of the practicing engineers, but also 
provides an additional facility wherein any a priori knowledge 
about the system/process and model parameters additionally. 
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provides the practicing engineers a facility to utilize any a 
priori known system/process related information. 

The paper is organized as follows. In section-2, some 
background of the genetic algorithms is given in brief. In 
section-3, the fixed structure transfer function model 
structures and the proposed identification approach are 
discussed. An algorithm is also given in brief. In section-4, 
simulation results are discussed. Section-5 contains the 
concluding remarks. 

n. GENETIC ALGORITHMS 

Genetic algorithms (GA) is one of the efficient, popular 
and proven evolutionary techniques for solving (global) 
optimization problems. The GA differs from other search 
techniques [14-17] by the use of concepts taken from natural 
genetics and evolution theory. The algorithm works with a 
population of strings, searching many peaks in parallel. By 
employing genetic operators it exchanges information between 
the peaks, hence reducing the possibility of terminating at a 
local optima thereby avoiding missing out of the global 
optimum. Genetic algorithms differ substantially from other 
optimization methods [14-17] in the following ways. 

1) GAs search from a population of points, not a single point, 
so the search for the optimum is driven from many- places 
in the search space simultaneously. This gives a better 
chance of finding the global optimum. 

2) They work with a coding of the parameter set, not the 
parameter themselves. 

3) They use the objective function directly, not the derivatives 
or other auxiliary knowledge. This objective function 
describes the goodness of the particular function. Being 
non-gradient-based technique, it is applicable even to the 
problems in which the objective functions are non
differentiable. 

4) They use probabilistic transition rules to converge to the 
global optimum of a function. The rules are based on the 
natural idea of supporting good strings with higher fitness 
and removing poor strings with lower fitness. The best 
strings representing the best solutions are allowed to 
survive the evolution process with a higher probability. 

The survival of the fittest and the death of the poor code 
strings are achieved by applying three basic operations: 
Reproduction, Crossover, and Mutation. The population of 
strings represents all the strings that are being processed in the 
current step of GA. The sequence of reproduction, crossover, 
and mutation generates a new population of strings from the 
previous population. The GA has been found very efficient 
and reliable in computing the global optimum, particularly in 
case when the objective function is observed to have multiple 
local optima. Hcnce, they have found a wide spread 
applications in solving the (global) optimization problems in 
many areas like pattern recognition applications, robotics and 
artificial life applications, expert system applications, system 
ideritification and so on [14-1 7]. 

III. PROPOSED APPROACH 

A. Proposed Model Structures 
Typically, the model structures used by the available 

identification techniques are classified as the non-parametric 
(e.g. ARX, ARMAX etc. time series models) or the parametric 
(e.g. State Space, Box Jenkins etc.) [1-7]. Some researchers 
have also tried to use transfer function approach to system 
identification [10-13]. However, one of the main difficulties of 
most system identification approaches is to determine the 
order of the model structures to use for a particular system. 

In this work, we propose to use the popular and easy 
to use fixed structure transfer function models, such as 
FOPDT, SOPDT ctc. The main reasons to choose these model 
forms and structures are -

1) These are the most commonly used transfer function model 
forms for the control applications. 

2) Most (more than 90%) of the physical systems can be 
approximated (about 60% by FOPDT & 30% by SOPDT 
models) using these forms with acceptable accuracy, in the 
region of interest. 

3) The models being of lower order are computationally 
cheap, and also suitable for online control applications like 
tuning of PID controller, for use as the model in model 
based control techniques. 

4) The transfer function models are more intuitive, known to 
practicing engineers. The practicing engineers based on the 
process knowledge and experience can easily determine 
these structures. Hence the identification approach based 
on these structures can become more popular and simple to 
use in industry. 

The mathematical representations of the fixed structure 
transfer function models considered are well known as given 
below: 

The standard First-Order-Plus-Dead-Time or FOPDT 
transfer function model is mathematically represented as -

G(s) = Ke�Ls 
Ts+ 1 

(1) 

The standard Two-Time-Constant-Plus-Dead-Time or 
2TCPDT transfer function structure covers two time constant 
in series configuration (i.e. it is over damped 20d order transfer 
function). It is mathematically represented as-

(2) 

The standard Second-Order-Plus-Dead-Time or SOPDT 
transfer function structure covers the under damped system 
response and is mathematically represented as --

G(s)= Ke-Ls 
(Tn"s"+2zTns+l) 
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The standard 2-Time-Constant- ] -Zero-Plus-Dead-Time or 
2TC1ZPDTtransfer function model structure covers the 
inverse response observed in many industrial systems and is 
mathematically represented as -

(4) 

Where, K - Process Gain 
T. TI. T1. Tz = Process Time Constants(zero/pole) 

Tn - Natural Period of Oscillation 
Z - Damping constant, and 
L - Dead time (Time delay) 

B. Proposed Algorithm 
In the proposed approach, the element t�nsfer functions of 

the transfer matrix can be any of the vanous standard and 
known transfer function structures like FOPDT, 2TCPDT. 
SOPDT. 2TCIZPDT as described above. The fixed structure 
transfer function model identification problem can be posed as 
the problem of estimating the mod�l parameters (lik� K, 

.
T" 

Tn, Z and L). The transfer function parameter estimatIOn 
problem is posed mathematically as the const:ain,ed 
optimization (minimization) probleI? [14, 15].. The �bJectlve 
function to be minimized is a function of the slmulatlon error 
i.e. some function of error between model simulated output 
y(t) and the measured output yet). �is. constrained 
optimization problem can be represented as given In (5). 

Min{f(y- y)} 
o 

S.I.omin ::::; B ::::; Bmax 

Where 9= {K, Ti, Tn, Z, L} 

(5) 

In (5), a set of the decision variables is actually a set of 
parameters to be estimated i.e. €I = {K, Ti, Tn, Z, L}, whereas 
€I . and 8 are lower and upper constraints (bounds) on the mm max . . . 
parameters to be estimated. The constraine� optImlzat.lO� 
fonnulation, in fact, allows the user to explOlt any a pnon 
knowledge about the possible range of the model P?rameters, 
or to enable/disable some input-output channels In MIMO 
identification. 

Now we describe an algorithm for the proposed approach 
of system identification. 

Algorithm: Fixed Structure Transfer Matrix Identification 
Algorithm (FSTMlA) 

Inputs: 
1. Set of measured input-output data. 
2. Constraints on the parameters 8min, 8max 

Outputs: 
A set of estimated parameters e. 

Algorithm: 
Begin 
1. Choose suitable values for the parameters e within the 

prescribed constraints. 
2. Simulate the output response using the input data set 

and the trial parameter set. 
3. Compute the objective function using the error between 

the measured and the simulated model output. 
4. If the minimum of the error function is not reached, go 

back to step-I. Otherwise go to next i.e. step-5. 
5. Terminate the algorithm with the resulted parameter set 

where the minimum of the error function is obtained, 
along with the minimum value of the error function 
achieved. 

End. 
In the proposed approach this constrained optimization 

problem is solved using genetic
. 

a�gor!thm (G1) {l4-17), 
which is a popular and proven optimizatIOn techmque that IS 
observed to reliably find the global optimum solution. The 
choice of the decision variable values (i.e. the parameter set 13) 
in step-l arc iteratively decided by the basic operations of the 
GA technique e.g. reproduction, mutation and crossover. The 
optimum solution of the decision �ariables (i.�. the par�meter 
set ElQpt) is the best candidate obtamed as per the survival of 
the fittest' evolutionary concept of GA. In general, the 
(global) optimum is obtained whe� ?A is. t:rminated 
according to some appropriate termmatlOn cntenon [15]. 
Thus, the parameters of the identified mo�el are actually the 
optimum solution obtained by GA dunng the parameter 
estimation step. 

IV. EXAMPLES 
The proposed system identification approac� (algorithm! is 

then programmed in MATLAB [4] and then IS tested usmg 
several benchmark test data sets for the system identification. 
Results for two benchmark examples from DaISy [18], a SISO 
example of the robot arm, and a MIMO example of an 
industrial dryer arc discussed here. The performance measure 
used to judge the fitrnent of the model is the % error between 
the original output and the output simulated by the 
deterministic part of the model [19], which is defined as --

""N-l • ( .))2 100 P L..j=o(Yj(j)- Yi J 
% Error = -L: 1 .::::�,,-"::""""N""-I:---.-2--

p ;=1 L.Jj=() (Y;(J)) 
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YiO) = measured value of output j at l instant t, 

jiO) = model simulated value of output i at lh instant t, 
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Example-I: Consider a SISO system of a flexible robotic 
ann installed on an electric motor. The input variable is the 
measured reaction torque of the structure on the ground and 
the output variable is the acceleration of the robot arm. This 
benchmark data set is taken from DaISy [18], which consists 
of 1024 input-output data points obtained by applying a 
periodic sine sweep on the experimental setup established in 
the laboratory of production manufacturing and automation at 
Katholieke Universiteit Leuven, Belgium. We applied the 
proposed approach on this data set taking first 500 data points 
for identification, and the remaining 524 data points for the 
validation. The performance measures obtained by various 
model structures are given in Table-I. Among them, the 
SOPOT structure is found to provide the best-fit model. The 
simulated and actual response of this model for identification 
and validation data sets shows (refer Fig. I) that both the 
responses match very well. Fig. 2 shows the enlarged plot for 
the data points after first 250 data points in each case (i.e. 
identification and validation) for clarity. It is found that the 
identified model matches well. 

TABLE I: SIMULA nON ERROR BY THE PROpOSED APPROACH FOR 

DIFfERENT MODEL STRUCTURES FOR EXAMPLE· I 

Approach Model Identification Villidation 
Order 

Proposed FOPDT 98.46 98.24 
FSTMIA 2TCPDT 98.45 98.23 
Approach 2TCIZPDT 98.45 98.24 

SOPDT 15.90 14.'15 

Identification plot fOI Robot Arm Acceleration 

Validation plot for Rohot Arm Acceleration 

0.5 

o RfIf:llll'Al\!IIVI'''I�� 

.0.5 

·1�-L __ � __ �-L __ ���-L __ � __ L-�� 
50 1 DO 150 200 250 300 350 400 450 500 

Figure I: Identification and Validation response plots of the best model in 
Example· I : measured (solid). proposed (dolted) 
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0.5 
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Validation plot for Robot Arm Acceleration 

·1 �--��-----L----�----__ � ____ �� 
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Figure 2: Enlarged Identification and Validation response plots of the 
best model in Example· I: measured (solid), proposed (dot) (For 
clarity, this enlarged plot shows the data points after first 250 data 
points in each case.) 

Example-2: Consider a MIMO system of an industrial 
dryer. The system has three inputs: fuel flow rate, hot gas 
exhaust fan speed, and rate of flow of raw material, and three 
outputs: dry bulb temperature, wet bulb temperature, and 
moisture content of the raw material leaving the dryer. The 
first two inputs are manipulated variables, and are changed by 
applying PRBS signal, whereas the third input is disturbance, 
but can be measured. The pre-treated data for this system is 
available as a benchmark data at DaiSy [18J, which consists of 
867 data points with a sampling period of 10 seconds. We 
used the first 600 data points for identification and remaining 
267 data points for the validation. 

The selected identification data set is used to identify state 
space model using recently popular approach of sub-space 
identification algorithm (N4SID) available in the identification 
toolbox of MATLAB [3,4], and also to identify transfer 
(function) matrix model using the proposed fixed structure 
transfer matrix identification algorithm (FSTMIA). The % 
simulation error obtained by various model structures, and by 
these approaches is compared in Table-I. It is observed that 
the best-obtained model with N4SID algorithm is a 6-state 
state space model. 

TABLE 2: SrMULA nON ERROR BY DIFFERENT APPROACHES AND MODEL 

STRUCTURES 

Algorithm Order Identification Validation 
N4SID algorithm 2 87.82 87.82 
MATLAB [3,4J 4 39.30 69.06 

6 37.01 58.78 
proposed FOPDT 37.02 58.78 
FSTMIA 2TCPDT 39.99 56.44 

. Approach 2TCIZPDT 33.03 53.99 
SOPDT 75.94 86.00 

Algorithm 10.5 in 2 31.90 59.72 
[19J 4 30.66 60.00 

6 30.72 60.20 
8 29.71 58.22 
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Whereas the best model obtained by the proposed FSTMIA 
algorithm is 2TCIZPDT model i.e. 2-time-constant-l-zero

plus-dead-time as given by equation (3). In Table-I, the 
results obtained by the algorithm 10.5 in [19] are also given, 
for which 8th order model is the best-fit model. It is observed 
that % error for identification data set is minimum in ease of 
algorithm 10.5 of [19]. However, proposed approach shows 
the minimum % simulation error for the validation data. 
Hence, the model identified by the proposed approach can be 
considered better, because it generalizes better, in comparison 
to the other approaches, on the validation data set. 

The actual and simulated responses for identification and 
validation data sets (see Figs-3 to 5) also confinns that the 
model identified by the proposed approach are more accurate. 

The proposed approach is tested on several other 
benchmark data sets, and on actual industrial data and is found 
accurate. These results are not given here due to the space 
constraint. 

V. CONCLUDING REMARKS 

The proposed approach is novel in a way that the system 
identification problem is posed as a fixed structure transfer 
(function) matrix parameter estimation problem that is solved 
as a constraint optimization problem using genetic algorithm. 
The proposed approach is simple to use and can be 
successfully applied for system identification, obviously to the 
limitation of the chosen model structure. The model identified 
by the proposed approach is found to be user-friendlier, 
particularly for the practicing process engineers in industry, 
and also more accurate compared to those obtained by the 
popular sub-space algorithm available in the identification 
toolbox of MATLAB [3,4] and also compared to the results 
published earlier in the literature [19]. 
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Figure 3: Identification and Validation response plots of the best models in 
Ex.ample-2 for output-I: measured (thin solid), proposed (thick solid), 

subspace N4S6 (dash-dot). 
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Figure 4: Identification and Validation plots of the best models in Example-2 
for output-2: measured (Ihin solid), proposed (thick solid), subspace N4S6 

(dash-dot). 
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Figure 5: Identification and Validation plots of the best models in Example-2 
for output-3: measured (thin solid), proposed (thick solid), subspace N4S6 

(dash-dot). 
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