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a b s t r a c t

In direct approach to fuzzy modeling, structure identification is one of the most critical tasks. In modeling
the nonlinear system, this fact is more crucial. In this paper, a new hybrid method is proposed to cluster
the data located in the linear parts on the nonlinear systems. The proposed method can partition the
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input–output data in two groups: data located in the linear parts and data in the extrema. It is shown
that the first group of data is suitable to be clustered by Fuzzy C-Regression Model (FCRM) clustering
algorithm and the second group by Fuzzy C-Means (FCM). Then, based on the above findings, a new
hybrid clustering algorithm is proposed. Finally, the proposed approach is tested and validated by several
numerical examples of nonlinear functions.
tructure identification
onlinear functions

. Introduction

Fuzzy modeling is one of the most powerful techniques to
stimate input–output relation in complex nonlinear systems. In
eneral, there are two approaches to fuzzy modeling: (1) direct
pproach based on the expertise knowledge, and (2) indirect
pproach using input–output data of a system. In the first approach,
he system is developed by negotiation with the experts, using
ome heuristics. The most common critic on this approach is that
y increasing the number of input variables, the number of the
ules increases exponentially, and it is not appropriate for complex
ystems with large number of input–output variables. Moreover,
his approach is usually subjective and depends on the expert’s
nowledge that sometimes could be faulty [4]. Besides, knowledge
cquisition is not a trivial task, experts are not always available, and
hen they are, their knowledge is not always consistent, systematic

nd complete, but often incomplete and episodic [14]. However,
he main advantage of this approach is its interpretability, because
hen a fuzzy model is developed by using expertise knowledge,
sually the model designer takes care that the model remains inter-
retable [9].

The second approach is extensively used by researchers and

wide variety of methods have been proposed in this domain

1,2,4,5,7,8,10,12,15–18,21–23]. Generally, fuzzy modeling meth-
ds in this approach comprise of two main phases: (1) structure
dentification (rough tuning), and (2) parameter identification (fine
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tuning). Structure identification is mostly associated with par-
titioning of the input space, whereas parameter identification
concerns to estimating parameters of the fuzzy membership func-
tions and the coefficients of the linear functions. In other words,
the aim of structure identification is to construct an initial fuzzy
model to describe the inherent structure of the given input–output
data, whereas a procedure of parameter identification is applied to
obtain a more precise fuzzy model regarding the identified struc-
ture [20]. Since antecedents and consequents in a fuzzy model are
interdependent, parameter identification is a recursive task.

When there is a lot of input–output data of a system without
any other information about it, determination of the structure of
the fuzzy model becomes an important issue [20]. In such cases,
fuzzy clustering is so efficient to construct the structure of the sys-
tem [3]. The aim of a cluster analysis is to partition a given set of data
or objects into partitions considering homogeneity within clusters
and heterogeneity between clusters [6]. In the literature, different
fuzzy clustering algorithms have been presented by researchers.
From them, Fuzzy C-Varieties (FCV) [6], Fuzzy C-Regression Model
(FCRM) [9], Fuzzy C-Means (FCM) [6,13,19,24], Gustafson-Kessel
(GK) [6,19], and Fuzzy Sell Clustering (FSC) [6,24] are more preva-
lent.

The development of the FCM algorithm was the birth of all fuzzy
clustering techniques in which spherical clouds of points are rec-
ognized [6]. The Euclidean distance is used to measure the distance
between a data and cluster centers. By replacing the Euclidean

distance by another metric induced by a positive definite and sym-
metric matrix in the FCM algorithm, ellipsoidal fuzzy clusters could
also be recognized that leads to the GK algorithm [6]. Therefore,
FCM and GK algorithms are suitable for detecting patches of data
in hypersphere-shaped and hyperellipse-shaped clusters, respec-
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ively. Since GK algorithm is more adaptable to the size and the
hape of the clusters, it results to more efficient clusters. FCM and
K algorithms are two of the most suitable ones which extensively
ave been used to identify the structure of Mamdani fuzzy models.
hey define fuzzy partitions based on the idea that the training data
eing close enough instead of having similar functions [2], which

s proper to extract Mamdani fuzzy models and yet inappropriate
o detect hyperplanes in TS fuzzy models.

While FCM and GK algorithms seek patches of data, the FCRM
lgorithm has been developed for the recognition of hyperplane-
haped clusters. It obtains the representative of each cluster by
alculating a hyperplane-shaped fit of the affiliated data using

eighted Recursive Least Squared (WRLS) algorithm [9]. The idea
ehind the FCRM algorithm is to find a set of training data whose

nput–output relationship is somehow linear, and then, those train-
ng data can be clustered into one fuzzy subspace [9]. As a result,
CRM algorithm is proper to extract TS fuzzy models but inefficient
o recognize the structure of Mamdani fuzzy models.

Even though TS fuzzy models are usually more precise, in con-
rast to Mamdani fuzzy models, but the gathered data of the system

ight not be appropriate for FCRM algorithm, i.e., they might form
atches rather than hyperplanes. Therefore, an effective way to
onstruct a precise fuzzy model is to detect the pattern of the data
nd to apply the proper clustering algorithms. Nevertheless, the
attern of the gathered data of a nonlinear system can be a mixture
f the two mentioned ones: some data appropriate to regard them
s the patches and some data proper to fit a hyperplane on. Gen-
rally, the data located in the linear parts of a nonlinear system is
uitable for FCRM algorithm and the ones in the extrema is suitable
or FCM (or GK). An effective way to enhance the results of cluster-
ng is separating data located in the linear parts and in the extrema.
hen, applying FCRM clustering algorithm which complies with lin-
ar patterns on the first group and FCM (or GK) on the second group
ill help to increase the model’s precision. In addition, such a data

rouping facilitates specification of the proper number of partitions
n each group. In this paper, we propose an algorithm by which
he data can be classified into two patterns: the patches and the
yperplanes.

The remaining of this paper is organized as follows: in Section
the proposed method of identification of the linear parts of non-

inear systems is investigated. Section 3 presents the efficiency of
he proposed method by some numerical examples. Finally, con-
lusions and future works appear in Section 4.

. The proposed algorithm to identify the linear parts of
onlinear systems

A nonlinear function can be regarded as a set of local linear sub-
unctions. TS fuzzy models are constructed based upon this attitude.
owever, there is not a unique partitioning, but many different
nes when partitioning is carried out subjectively (rather than algo-
ithmically) by different individuals. For instance, consider Fig. 1,
here a nonlinear function is partitioned to linear sub-functions

ubjectively by two individuals. Fig. 1(a) depicts partitioning of this
onlinear function to four linear sub-functions by the first person,
hereas the second one prefers seven linear sub-functions to cover

he nonlinear function, depicted in Fig. 1(b).
Though the more linear sub-functions results in a more precise

stimation, one of the most desirable features of fuzzy models is
heir interpretability. The number of rules in a fuzzy model is a

roportion of the number of partitions. In this sense, less partitions

eads to more interpretable fuzzy models. By a more interpretable
odel, we mean a more explainable model rather than a more pre-

ise one. The proposed algorithm helps to determine the proper
umber of partitions.
Fig. 1. Estimating a nonlinear function using linear sub-functions by two different
individuals.

As mentioned in the previous section, FCRM is an appropri-
ate algorithm to extract hyperplane-shaped clusters. However, as
shown in Fig. 2, even if the hyperplanes are detected in the best
manner, great errors in the extrema, in contrast to errors in the
other points, are inevitable. This is usually true, regardless to the
number of hyperplanes selected to estimate the main nonlinear
function. Therefore, development of some method to decrease
errors in the extrema is valuable.

In all nonlinear systems, sampled data can be divided into two
main groups: data located in the linear parts of the system, and data
located in the extrema. Applying FCRM clustering algorithm on the
first group and FCM (or GK) clustering algorithm on the second
group would significantly improve the results of fuzzy modeling.
Fig. 3 shows the results of FCRM in partitioning of the sample data
of linear parts of a nonlinear system. Similarly, Fig. 4 demonstrates
the results of FCM in clustering the data in extrema of the nonlinear
system.

This classification also decreases sensitivity of the specified cri-
terion to select the best number of the clusters, because some
desirable gaps are created among the data in both groups, i.e.,
the gaps among hyperplanes and the gaps among patches. These
gaps help the FCM (or GK) algorithm to obtain clusters with more
compactness inside clusters and more distinction among them.
Similarly, the gaps between data selected to apply FCRM algorithm,
help the algorithm to determine hyperplanes with more fitness on
the data. Fig. 5 represents the final clustering result. This figure
shows the identification of the linear parts of the nonlinear sys-
tem. Here, the division of the sampled data into two groups not

only retains the precision in the linear parts of the system, but also
diminishes the errors in the extrema.

In this section, we propose a method to classify the sampled
data into two main groups. The first group consists of data located
in the linear parts of the nonlinear system, i.e., the data on which 
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Fig. 2. Applying FCRM clustering algorithm on all data.

Fig. 3. Suitable data for applying FCRM clustering algorithm on.

Fig. 4. Suitable data for applying FCM (or GK) clustering algorithm on.

 

 

Fig. 5. The estimated function by applying FCRM and FCM clustering algorithms
separately on the suitable data.

hyperplanes are fitted with high confidence level and extensive
domain. In contrast, the second group consists of the data located
in the extrema of the nonlinear system. FCRM clustering algorithm
is appropriate for the first group, and the second group, which con-
tains patches of data in the extrema, is suitable to be clustered by
FCM (or GK). We expect that the rules generated by FCRM cover
separate parts of the universe of discourse and the remaining of
the universe of discourse is covered by the rules generated by FCM
(or GK).

Accordingly, the consequents of the ultimate fuzzy model con-
sists of linear functions which are the resultant of applying FCRM
clustering algorithm on the first group as well as singletons which
are the resultant of applying FCM (or GK) clustering algorithm on
the second group. Eventually, we would have a TS fuzzy model in
which consequents of some rules are linear functions and conse-
quents of the other rules are singletons, which is a special case of
linear functions. Finally, a parameter identification method can be
used for fine tuning of the fuzzy model.

2.1. Theoretical aspects

This section presents some theoretical aspects related to the
proposed algorithm. We first concentrate on linear functions in a 2-
dimentional space and then will expand it to a (m + 1)-dimensional
space. Let y(x) = ax + b be a linear function defined in the universe
of discourse U = [x′, x′′]. For each input x = x0, exact value of the out-
put is calculated by y(x0) = ax0 + b. On the other hand, we are able
to estimate the output of each input x = x0 using the values of the
outputs of other points, i.e., ŷ(x0) is obtainable from the values of
y(x); ∀x /= x0. Then, y(x0) is estimated by the weighted average of
y(x); ∀x /= x0, where the closer x to x0 is assigned the bigger weight,
and this weight is reduced exponentially when x distances x0.

Although the Euclidean distance is proper to measure the dis-
tance between x and x0, we use squared Euclidean distance for the
sake of reduction of the computational effort to proof the proceed-
ing theorems. Let d(x) represents the distance between x and x0,
i.e.:

d(x) = (x − x0)2 (1)

So, we can calculate the weight of y(x) in estimating ŷ(x0) as follows:

w(x) = exp(−ˇ(x − x0)2)∫ x′′ 2
(2)
x′ exp(−ˇ(x − x0) ) dx

where ˇ is the coefficient which indicates sensitivity towards the
distance. The bigger the value of ˇ, the more stress on the points 
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ear to x0. Thus, ŷ(x0) can be calculated as follows:

ˆ(x0) =
∫ x′′

x′ w(x)y(x) dx∫ x′′
x′ w(x) dx

(3)

y considering the fact that
∫ x′′

x′ w(x) dx = 1, we have:

ˆ(x0) =
∫ x′′

x′
w(x)y(x) dx (4)

heorem 2.1 (.). Let y(x) = ax + b be a linear function with the uni-
erse of discourse U = [x′, x′′]. If we estimate each output by the
eighted average of the other outputs according to (2) and (4),

he point x0 = (x′ + x′′)/2 would have the least squared error, that is
y(x0) − ŷ(x0))2 = 0.

roof (.). See Appendix A.

heorem 2.2 (.). According to Theorem 2.1, the squared error of
he point x with distance value �x from the center of the line,
0 = (x′ + x′′)/2, is calculated as:

y(x0 + �x) − ŷ(x0 + �x))2 = a2L2ˇ

�eˇL2/2(2�(L
√

ˇ/2) − 1)
2

(�x)2 (5)

here L = x′′ − x′ and �(x) =
∫ x

−∞(1/
√

2�)e−z2
dz.

roof (.). See Appendix B.

As can be observed from Theorem 2.2, the squared error of the
utput of x = x0 + �x is proportional to the squared Euclidean dis-
ance of x from x0 = (x′ + x′′)/2. This implies that the maximum error
ccurs in the boundary points x = x′ and x = x′′. Moreover, by increas-
ng the interval L, the squared error for all points approaches to
ero, because the numerator grows linearly by L2 but the denom-
nator grows exponentially by L2. We can control the intensity of
he growth of squared error by adjusting ˇ. By increasing the value
f ˇ, the squared error is reduced because while the numerator
rows linearly by ˇ, the denominator grows exponentially by it.
his complies with the initial role of ˇ, inasmuch as by increasing
he value of ˇ, the nearer points to x are assigned bigger weights.
n addition, if we use the point in a smaller interval to estimate
he output, the related squared error would be smaller, regard-
ess to its location. Since differentiation of a linear function is a fix
alue, Theorem 2.2 shows the exact value of the squared error for
ll points. Now, Theorems 2.1 and 2.2 are generalized to a (m + 1)-
imensional space.

heorem 2.3 (.). Let y(X) = a0 +
∑m

j=1ajxj be a hyperplane in a
m + 1)-dimensional space and Uj = [x′

j
, x′′

j
] be the universe of dis-

ourse in the jth dimension. Similar to the previous discussion, the
utput of the point X0 = (x01, x02, . . ., x0m) is estimated using out-
uts of the other points X = (x1, x2, . . ., xm), where the weight of
ach output has a negative exponential relation corresponding to
he squared Euclidean distance of X from X0. In other words, the
istance can be defined as:
(X) = ||X − X0||2 =
m∑

j=1

(xj − x0j)
2 (6)

nd the estimated output for the point X0 is calculated as:

ˆ(X0) =
∫ x′′

m

x′
m

. . .

∫ x′′
2

x′
2

∫ x′′
1

x′
1

(w(X)y(X)) dx1 dx2 . . . dxm (7)
oft Computing 11 (2011) 807–819

where

w(X) =
exp
(
−
∑m

j=1ˇj(xj − x0j)
2)∫ x′′

m
x′

m
. . .
∫ x′′

2
x′

2

∫ x′′
1

x′
1

exp
(
−
∑m

j=1ˇj(xj − x0j)
2) dx1 dx2 . . . dxm

(8)

Proof (.). See Appendix C.

By using this method, X0 = (x01, x02, . . ., x0m) has the least squared
error (y(X0) − ŷ(X0))2 = 0 if x0j = (x′

j
+ x′′

j
)/2; ∀j = 1, 2, . . ., m.

Theorem 2.4 (.). If the outputs of a hyperplane are estimated
according to Theorem 2.3, the squared error of the point X which
has distance �X = (�x1, �x2, . . ., �xm) from the center of the hyper-
plane, X0, is:

(y(X0 + �X) − ŷ(X0 + �X))2 =

⎛
⎝ m∑

j=1

�j

⎞
⎠

2

(9)

where Lj = x′′
j

− x′
j
; j = 1, 2, . . ., m and

�j =
ajLj

√
ˇj

√
�eˇjLj

2/4(2�(Lj

√
ˇj/2) − 1)

�xj (10)

Proof (.). See Appendix D.

As a matter of fact, (10) shows that the sign of �j depends on
the signs of aj and �xj which both can be negative or positive.
Consequently, squared error for each point consists of the propo-
sitions that can be negative or positive, and their total sum does
not have direct proportion to the amounts of �xj’s. Unfortunately,
we cannot conclude that all boundary points in the hyperplane
have the biggest squared error, because by increasing each |�xj|
the related total squared error does not necessarily increase. How-
ever, it is proved that all points which have the minimum amounts
of squared error are concentrated around the center of the hyper-
plane. Theorem 2.5 states this pivotal matter.

Theorem 2.5 (.). If we estimate the outputs of a hyperplane accord-
ing to Theorem 2.3, then all points which have the squared errors
less than (�y)2 are located in a hyperellipse which its center is the
centroid of the hyperplane and thus, they are concentrated around
the center of the hyperplane.

Proof (.). See Appendix E.

According to Theorem 2.5, we expect that by distancing the cen-
ter of the hyperplane, the squared error of the points increase. It
should be noted that in the dimensions with bigger partial differen-
tiation, i.e., bigger amount of |aj|, the squared error increases more
rapidly and in the dimensions with smaller partial differentiation,
it increases slower.

2.2. Some additional remarks

Now, let us consider some necessary assumptions to the above
mentioned theorems in order to attain a real nonlinear system. Con-
sider a system in which the relation between inputs and output is
expressed by several hyperplanes, where each hyperplane covers
a part of the universe of discourse. We first deal with such a sys-

 

 

tem in a 2-dimensional space. Let Li be the length of the part of
universe of discourse covered by the ith line. If we estimate the
output of each point on the X axis using the outputs of the points
of the same line, then the center of each interval Li would have the
least squared error equal to zero, and the extrema would have the 
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iggest squared errors according to Theorem 2.2, i.e.:

y(x0 + �x) − ŷ(x0 + �x))2 = a2
i
L2

i
ˇ

�eˇL2
i

/2(2�(Li

√
ˇ/2) − 1)

2

(
1
2

Li

)2

(11)

here i refers to the ith line.
Note that even if we do not adjust the weight of each output

orresponding to the distance between x and x0, we would again
ave a squared error with the amount of zero in the center of each

nterval, even though the other points would have bigger squared
rrors.

In a (m + 1)-dimensional space, let Lij be the length of the part of
he universe of discourse covered by the ith hyperplane in the jth
imension. Similar to the 2-dimensional space, if we estimate the
utput of each point in a (m + 1)-dimensional space using the out-
uts of the points of the same hyperplane, then the center of each
yperplane would have the least squared error with the amount of
ero; i.e., the point Xi = (xi1, xi2, . . ., xim) where xij is in the center
f Lij. By moving from the center of each hyperplane, Xi = (xi1, xi2,
. ., xim), towards its boundaries into two opposite directions along
he jth axis, the squared errors will increase. In this case, in the
wo boundary points, there is �xj = ±(1/2)Lij for a particular j and

xj = 0 for the other j’s. Hence, the squared error is:

(y(X0 + �X) − ŷ(X0 + �X))2

=
(

aijLij

√
ˇj

√
�e

ˇjL
2
ij

/4
(2�(Lij

√
ˇj/2) − 1)

(
±1

2
Lij

))2

(12)

Like the 2-dimensional space, if we do not adjust the weight of
ach output corresponding to the distance between X and X0, again
he least squared error with the amount of zero in the center of each
yperplane is resulted. The other points, however, are expected to
ave bigger squared errors.

The above discussion shows that if the squared errors with the
mount of zero are desired in the center of each hyperplane, each
utput must be estimated by the outputs of the points located in
narrower distance from it rather than all point in the universe of
iscourse. This results in squared errors with the amount of zero
ot only in the center of each hyperplane, but also in the points
ear to the centers. In 2-dimensional space, we define L0 as:

0 = min{Li; i = 1, 2, . . . , c} (13)

When just the outputs on a particular line are used to estimate
n output on the same line, the points in the distance at most Li/2
rom the center of the interval Li are used, and this leads to the
quared error with the amount of zero just for the center of the line
nd positive squared errors for the other points. Now, if the points
ocated in the distance less than L0/2 from the center of each line
re used to estimate the outputs, then all points in the distance less
han (Li/2 − L0/2) from the center of the ith line would have squared
rrors with the amount of zero.

Similarly, in a (m + 1)-dimensional space, L0j is defined as:

0j = min{Lij; i = 1, 2, . . . , c}; j = 1, 2, . . . , m (14)

If the points in the distance L0j/2; ∀j = 1, 2, . . ., m from the center
f each hyperplane are used, then all points located in the dis-
ance less than (Lij/2 − L0j/2); ∀j = 1, 2, . . ., m from the center of each
yperplane would have squared error with the amount of zero. In

his paper, we use L0j = 0.1Lj, where Lj is the total length of the jth
xis and 0.1 is an empirical coefficient specified by solving different
umerical examples.

According to the discussions explained so far, we are able to
etect the centers of hyperplanes and the points around them using
oft Computing 11 (2011) 807–819 811

the squared error as a criterion. There are, however, some cru-
cial points that by considering them we must not expect to attain
squared errors with the amount of zero, even in the most linear
parts of the system. These are as follows:

a) There is a set of data rather than a set of functions. Obviously, we
access just to a finite number of input–output data of the system
not to equations of hyperplanes. In other words, when we are
faced to a fuzzy modeling problem, a set of input–output data
of the system, rather than a set of linear functions are in hand.
This implies that we do not know the amounts of Lj’s. In order
to solve this problem, the amount of Lj can be estimated as:

Lj = xmax
j − xmin

j (15)

where xmax
j

= max{xkj; k = 1, 2, . . . , n} and xmin
j

=
min{xkj; k = 1, 2, . . . , n}.

Moreover, (2), (4), (8) and (7) can be transformed to (16)–(19)
as follows:

w(xk) = exp(−ˇ(xk − x0)2)∑n
k=1exp(−ˇ(xk − x0)2)

(16)

ŷ(x0) =
n∑

k=1

w(xk)y(xk) (17)

w(Xk) =
exp
(
−∑m

j=1ˇj(xkj − x0j)
2)∑n

k=1exp
(
−
∑m

j=1ˇj(xkj − x0j)
2) (18)

ŷ(X0) =
n∑

k=1

(w(Xk)y(Xk)) (19)

b) Data are random. If all the gathered data of the system have
a deterministic uniform distribution, it can still be expected
that the center of each hypothetical hyperplane and the points
around them have squared errors with the amount of zero. In
the real situations, even though the input data have usually a
uniform distribution but this distribution is random. It implies
that we must not expect squared errors exactly equal to zero
for the centers and the points around them. Still, the error of
these points would have a normal distribution with the mean
zero, and thus their squared error would be a positive random
variable with the mean near to zero. To conclude, in order to dis-
cover the centers of hyperplanes and the points around them,
we must transform the condition squared errors with the amount
of zero to the condition squared errors near to zero.

(c) The system is inherently nonlinear. Generally, the relation
between inputs and output of the nonlinear systems is not a
set of local hyperplanes but is a (m + 1)-dimensional hypersur-
face on which we have supposed local hyperplanes so far. This
implies that the squared errors again increase. In order to con-
trol this fact, the assigned weight to the points is decreased
exponentially corresponding to their distances from the esti-
mated point. This leads to the fact that each output is estimated
relying more on the points around it. Therefore, in nonlinear
systems, we try to estimate each output using the points around
it. Hence, the previous theorems would remain quite valid. This,
furthermore, causes that the squared error of all points, consist-
ing the points around the centers, do not increase much and so
we seek still the points with squared errors near to zero.

 

 

There are two main conflicting issues which handling them
leads to a more efficient algorithm. In one hand, considering
more limited points to estimate the output of each point leads
to smaller squared errors that ultimately makes difficult detect-
ing the linear parts of the systems. So, we must use the points 
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in a wider interval to estimate each output. This causes increas-
ing the difference between squared error in the center of each
hyperplane and squared errors of the other points and thus the
centers and the points around them are recognized more eas-
ily. On the other hand, using many points to estimate the output
of each point results in bigger squared errors and again makes
difficult to detect the linear parts of the system, because the dif-
ference between squared error in the center of each hyperplane
and squared errors of the other points increases. Investigating
different nonlinear functions shows that using the points which
are in the distance less than 10% of the universe of discourse
along each dimension is proper, i.e., we should estimate the
output of each point X0 = (x01, x02, . . ., x0m) using the outputs of

the points Xk = (xk1, xk2, . . ., xkm) which satisfy (20):

|x0j − xkj| ≤ 0.1Lj; ∀j = 1, 2, . . . , m (20)

Fig. 6. The propose
oft Computing 11 (2011) 807–819

2.3. The proposed algorithm

In the proposed algorithm, the data are classified into two sepa-
rate groups; the first group consists of the data located in the linear
parts of the nonlinear system, and the second group consists of the
data located in the extrema of the nonlinear system. The proposed
algorithm is presented in Fig. 6.

3. Numerical examples

In this section, the proposed method to identify the linear parts
of nonlinear systems is validated using some numerical examples.
In the first three examples, three nonlinear functions are consid-

 

 

ered. From the real function, some uniformly distributed data are
generated and then the proposed algorithm is implemented on
these data. In the last example, some data of an unknown non-
linear function are investigated, and efficiency of the algorithm to
identify linear parts is demonstrated using these data.

d algorithm.  
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Table 1
Some numerical results of example 1.

# of data �0 + 3�0 �1 |S1| |M1|
201 0.0195 0.0022 128 73
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Fig. 9. The categorized data of example 1.

Table 2
Some numerical results of example 2.

 

 

Fig. 7. The real and the estimated function of example 1.

.1. Example 1

For the first example, let us consider a gaussian function of the
orm:

= exp

(
− (x − 5)2

2

)
(33)

We consider interval [0, 10] as the universe of discourse. So,
= 10 and the data which are in the distance with the amount of
t most 0.1L = 0.1(10) = 1 from the estimated point must be taken
nto account. Based on 201 uniformly distributed data, the outputs
re estimated according to the proposed algorithm. Table 1 shows
summary of some numerical results of implementation of the

lgorithm on the mentioned data. In this table, |S1| and |M1| indicate
he cardinality of the sets S1 and M1, respectively. In other words,
S1| indicates the number of data which the algorithm categorizes
s the data located in the linear parts. Equivalently, |M1| shows the
umber of data which the algorithm categorizes as the data located

n the extrema.
The following figures show presentations of implementation

f the algorithm. Fig. 7 shows the considered points of the real
unction as well as the estimated points. One can immediately
nderstand that in the linear parts the estimation error is lower

han in the nonlinear parts. This is, indeed, the main idea to develop
he proposed algorithm.

In order to obtain the final category of the linear and nonlinear
oints, we use the squared errors shown in Fig. 8. All points with

Fig. 8. The squared errors of data of example 1.
# of data �0 + 3�0 �1 |S1| |M1|
100 0.5332 0.1722 51 49

squared error less than �1 = 0.0022 are assigned to set S1 and the
others are categorized in set M1.

Fig. 9 once again shows the initial data but within two cate-
gories. Now, we have obtained a figure like Figs. 3 and 4, but using
a mathematical algorithm rather than a subjective method. FCRM
can perform much better on the data located in the linear parts,
and the remaining ones can be clustered using FCM (or GK) more
efficiently.

Note that these categories are very close to the way that we
subjectively categorize linear and nonlinear parts of a gaussian
function.

3.2. Example 2

In this example, a Sin function is used, i.e.:

y = Sin(x) (34)

We consider interval [0, 20] as the universe of discourse for
this function. So, we have L = 20 and the data in the vicinity of
at most 0.1L = 0.1(20) = 2 units from the estimated point must be
considered. Based on 100 uniformly generated data, the outputs
are estimated according to the proposed algorithm. Table 2 shows
a summary of some numerical results of implementation of the

algorithm on the mentioned data.

Interpretations of Figs. 10–12 are equivalent to those of Figs. 7–9.
So, to avoid redundancy, we do not repeat those explanations.

Fig. 10. The real and the estimated function of example 2. 
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Fig. 11. The squared errors of data of example 2.

Fig. 12. The categorized data of example 2.

Table 3
Some numerical results of example 3.

3

t

y

S
0
B
i
a

Fig. 14. The squared errors of data of example 3.

Fig. 15. The categorized data of example 3.

 

 

# of data �0 + 3�0 �1 |S1| |M1|
250 0.0107 0.0017 184 66

.3. Example 3

Here, we investigate a saturated function, log sigmoid. This func-
ion is presented as:

= 1
1 + exp(−x)

(35)

Interval [−15, 15] is considered as its universe of discourse.
o, we have L = 30 and the data with the distance at most
.1L = 0.1(30) = 3 from the estimated point must be considered.

ased on 250 uniform data in interval [−15, 15], the algorithm is

mplemented. Table 3 shows a summary of some numerical results,
nd Figs. 13–15 show the graphical presentations.

Fig. 13. The real and the estimated function of example 3.
Fig. 16. The real and the estimated function of example 4.

3.4. Example 4

In the last example, we do not use any function. Instead, we use
some data of a complicated unknown nonlinear function presented
in Fig. 16.

We consider interval [0, 300] as the universe of discourse. So,
L = 300 and the data in the vicinity of at most 0.1L = 0.1(300) = 30
units from the estimated point must be taken into account. Based on
300 uniformly distributed data, the outputs are estimated accord-
ing to the proposed algorithm. Table 4 shows a summary of some
numerical results of implementation of the algorithm on the men-

tioned data, and Figs. 16–18 show the visual presentations of the
results.

Solving several numerical examples revealed the fact that the
algorithm performs better for nonlinear functions the linear parts

Table 4
Some numerical results of example 4.

# of data �0 + 3�0 �1 |S1| |M1|
300 488.94 108.58 193 107
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Fig. 17. The squared errors of data of example 4.
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Fig. 18. The categorized data of example 4.

f which cover a higher ratio of the universe of discourse in com-
arison to the nonlinear parts.

. Conclusion and future works

A novel hybrid method based on some mathematical theorems
o identify the linear parts of nonlinear systems has been proposed
n this paper. The proposed method divides the sample data into
wo groups: data located in the linear parts and data located in the
xtrema. Such a data grouping causes some desirable gaps among
ata in each group that contributes FCRM and FCM (or GK) algo-
ithms to specify the correct number of clusters in each group. The
roposed algorithm can be used to extract not only a more pre-
ise TS fuzzy model, but also to extract a more precise Mamdani
uzzy model by identifying the extrema, since an optimal Mamdani
uzzy model is obtained when rule patches cover the extrema of
he approximated function [11]. Efficiency of the proposed method
as been demonstrated by variant nonlinear data. The algorithm
ses the points which are in the distance less than 10% of the
niverse of discourse along each dimension. This value has been
dopted empirically by solving several numerical examples of non-
inear functions and plays a crucial role. However, more empirical
nd mathematical research is needed to adjust it more precisely in
rder to fortify the results of the proposed algorithm. Likewise, the
ounds �0 + 3�0 and �1 to assign the points to sets S0 and S1 have
een selected empirically that needs more research.

ppendix A. Proof of Theorem 2.1

Considering the function y(x) = ax + b, the real output for x = x0
s y(x0) = ax0 + b. According to the proposed algorithm, we estimate

ach output as:

ˆ(x0) =
∫ x′′

x′
w(x)y(x) dx
oft Computing 11 (2011) 807–819 815

where w(x) = e−ˇ(x−x0)2
/
∫ x′′

x′ e−ˇ(x−x0)2
dx and ˇ is the coefficient

which indicates sensitivity towards the distance. So, we can calcu-
late ŷ(x0) as follows:

ŷ(x0) =
∫ x′′

x′
w(x)y(x) dx

ŷ(x0) = 1∫ x′′
x′ e−ˇ(x−x0)2

dx

∫ x′′

x′
e−ˇ(x−x0)2

(ax + b) dx

ŷ(x0) = 1∫ x′′

x′ e−ˇ(x−x0)2
dx

(
a

∫ x′′

x′
xe−ˇ(x−x0)2

dx + b

∫ x′′

x′
e−ˇ(x−x0)2

dx

)

where
∫ x′′

x′ e−ˇ(x−x0)2
dx = (1/

√
2ˇ)

√
2�
∫ x′′

x′ (1/(1/
√

2ˇ)
√

2�)

e−(1/2)((x−x0)/(1/
√

2ˇ))
2

dx.
The last integral indicates the area below diagram of a normal

distribution with mean x0 and variance 1/(2ˇ). Therefore,∫ x′′

x′
e−ˇ(x−x0)2

dx = 1√
2ˇ

√
2�(Pr(X ≤ x′′) − Pr(X ≤ x′))

where X ∼ N(x0, 1/(2ˇ)).
Transforming X to a standard normal distribution results in:∫ x′′

x′
e−ˇ(x−x0)2

dx =
√

�

ˇ
(�(
√

2ˇ(x′′ − x0)) − �(
√

2ˇ(x′ − x0)))

where Z ∼ N(0, 1) and �(z) = Pr(Z ≤ z).
Let k =

√
�/ˇ(�(

√
2ˇ(x′′ − x0)) − �(

√
2ˇ(x′ − x0))), so:

ŷ(x0) = 1
k

(
a

∫ x′′

x′
xe−ˇ(x−x0)2

dx + bk

)

ŷ(x0) = (ax0 + b) − a

2ˇk
(e−ˇ(x′′−x0)2 − e−ˇ(x′−x0)2

)

Now, let L = x′′ − x′, so we have x0 = (x′ + x′′)/2 when x′ − x0 → L/2.
Therefore,

Lim
x0−x′→L/2

k = Lim
x0−x′→L/2

√
�

ˇ
(�(
√

2ˇ(x′′ − x0)) − �(
√

2ˇ(x′ − x0)))

Lim
x0−x′→L/2

k =
√

�

ˇ

(
2�

(
L

√
ˇ

2

)
− 1

)

Accordingly,

Lim
x0−x′→L/2

ŷ(x0) = (ax0 + b) − a

2ˇ

√
ˇ

√
�(2�(L

√
ˇ/2) − 1)

(e−ˇ(L/2)2 − e−ˇ(−L/2)2
)

Lim
x0−x′→L/2

ŷ(x0) = (ax0 + b) = y(x0)

Thus, Theorem 2.1 is proved. �

Appendix B. Proof of Theorem 2.2

 

 

In one hand, we have:

y(x0 + �x) = y(x0) + dy(x0)
dx0

�x = (ax0 + b) + a �x = a(x + �x) + b
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n the other hand, according to Theorem 2.1 we have:

ˆ(x0) = (ax0 + b) − a

2ˇk
(e−ˇ(x′′−x0)2 − e−ˇ(x′−x0)2

)

artially differentiating the above equation towards x0 leads to:

dŷ(x0)
dx0

= a − a

2ˇk
(2ˇ(x′′ − x0)e−ˇ(x′′−x0)2 − 2ˇ(x′ − x0)e−ˇ(x′−x0)2

)

Lim
x0−x′→L/2

dŷ(x0)
dx0

= a − a

2ˇ

√
ˇ

√
�(2�(L

√
ˇ/2) − 1)

×
(

2ˇ
L

2
e−ˇ(L/2)2 − 2ˇ

(
− L

2

)
e−ˇ(−L/2)2

)

Lim
0−x′→L/2

dŷ(x0)
dx0

= a − aL
√

ˇ
√

�eˇL2/4(2�(L
√

ˇ/2) − 1)

herefore,

ˆ(x0 + �x) = ŷ(x0) + dŷ(x0)
dx0

�x

ˆ(x0 + �x) = (ax0 + b) + a �x − aL
√

ˇ
√

�eˇL2/4(2�(L
√

ˇ/2) − 1)
�x

ˆ(x0 + �x) = y(x0 + �x) − aL
√

ˇ
√

�eˇL2/4(2�(L
√

ˇ/2) − 1)
�x

ccordingly,

y(x0 + �x) − ŷ(x0 + �x))2 = a2L2ˇ

�eˇL2/2(2�(L
√

ˇ/2) − 1)
2

(�x)2

o, Theorem 2.2 is proved. �

ppendix C. Proof of Theorem 2.3

In a (m + 1)-dimensional space, real output of the point X0 = (x01,
02, . . ., x0m) is:

(X0) = a0 +
m∑

j=1

ajx0j

nd squared Euclidean distance of X0 = (x01, x02, . . ., x0m) from
= (x1, x2, . . ., xm) is:

(X) = ||X − X0||2 =
m∑

j=1

(xj − x0j)
2

lso, the weight of X in estimating X0 is:

(X) = e
−
∑m

j=1
ˇj(xj−x0j)

2

∫ x′′
m

x′
m

. . .
∫ x′′

2
x′

2

∫ x′′
1

x′
1

e
−
∑m

j=1
ˇj(xj−x0j)

2

dx1 dx2 . . . dxm

here ˇj is the coefficient which represents sensitivity towards
he distance in the jth dimension. Therefore, y(X0) is calculated as
ollows:
ˆ(X0) =

∫ x′′
m

x′
m

. . .
∫ x′′

2
x′

2

∫ x′′
1

x′
1

(w(X)y(X)) dx1 dx2 . . . dxm∫ x′′
m

x′
m

. . .
∫ x′′

2
x′

2

∫ x′′
1

x′
1

w(X) dx1 dx2 . . . dxm
oft Computing 11 (2011) 807–819

Since
∫ x′′

m
x′

m
. . .
∫ x′′

2
x′

2

∫ x′′
1

x′
1

w(X) dx1 dx2 . . . dxm = 1, we have:

ŷ(X0) =
∫ x′′

m

x′
m

. . .

∫ x′′
2

x′
2

∫ x′′
1

x′
1

(w(X)y(X)) dx1 dx2 . . . dxm

ŷ(X0) = 1∫ x′′
m

x′
m

. . .
∫ x′′

2
x′

2

∫ x′′
1

x′
1

e
−
∑m

j=1
ˇj(xj−x0j)

2

dx1 dx2 . . . dxm

×
∫ x′′

m

x′
m

. . .

∫ x′′
2

x′
2

∫ x′′
1

x′
1

e
−
∑m

j=1
ˇj(xj−x0j)

2

⎛
⎝a0 +

m∑
j=1

ajxj

⎞
⎠

dx1 dx2 . . . dxm

We can write:∫ x′′
m

x′
m

. . .

∫ x′′
2

x′
2

∫ x′′
1

x′
1

e
−
∑m

j=1
ˇj(xj−x0j)

2

dx1 dx2 . . . dxm

=
m∏

j=1

∫ x′′
j

x′
j

e−ˇj(xj−x0j)
2

dxj =
m∏

j=1

qj

where

qj =
∫ x′′

j

x′
j

e−ˇj(xj−x0j)
2

dxj

qj =
√

�

ˇj
(�(
√

2ˇj(x
′′
j − x0j)) − �(

√
2ˇj(x

′
j − x0j)))

Z ∼ N(0, 1) and �(z) = Pr(Z ≤ z).
Therefore,

ŷ(X0) =
∫ x′′

m

x′
m

. . .

∫ x′′
2

x′
2

∫ x′′
1

x′
1

(w(X)y(X)) dx1 dx2 . . . dxm

where w(X) = e
−
∑m

j=1
ˇj(xj−x0j)

2

/
∏m

j=1qj .
By replacing w(X) in ŷ(X0) we would have:

ŷ(X0) = 1∏m
j=1qj

∫ x′′
m

x′
m

. . .

∫ x′′
2

x′
2

∫ x′′
1

x′
1

⎛
⎝a0 +

m∑
j=1

ajxj

⎞
⎠

e
−
∑m

j=1
ˇj(xj−x0j)

2

dx1 dx2 . . . dxm

ŷ(X0) = 1∏m
j=1qj

∫ x′′
m

x′
m

. . .

∫ x′′
2

x′
2

e
−
∑m

j=2
ˇj(xj−x0j)

2

R1 dx2 . . . dxm

where

R1 =
∫ x′′

1

x′
1

⎛
⎝a0 + a1x1 +

m∑
j=2

ajxj

⎞
⎠ e−ˇ1(x1−x01)2

dx1

 

 

R1 = a0 +
j=2

ajxj
x′

1

e dx1

+a1

∫ x′′
1

x′
1

x1e−ˇj(x1−x01)2
dx1
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1 = (a0 + a1x01)q1 + q1

m∑
j=2

ajxj − a1

2ˇ1
(e−ˇ1(x′′

1
−x01)2 − e−ˇ1(x′

1
−x01)2

)

hus,

ˆ(X0) = 1∏m
j=1qj

∫ x′′
m

x′
m

. . .

∫ x′′
3

x′
3

e
−
∑m

j=3
ˇj(xj−x0j)

2

R2 dx3 . . . dxm

here

2 =
∫ x′′

2

x′
2

e−ˇ2(x2−x02)2

⎛
⎝(a0 + a1x01)q1 + q1

m∑
j=3

ajxj

− a1

2ˇ1
(e−ˇ1(x′′

1
−x01)2 − e−ˇ1(x′

1
−x01)2

) + q1a2x2

⎞
⎠ dx2

2 =

⎛
⎝(a0 + a1x01)q1 + q1

m∑
j=3

ajxj

− a1

2ˇ1
(e−ˇ1(x′′

1
−x01)2 − e−ˇ1(x′

1
−x01)2

)

⎞
⎠q2

+ q1a2

( −1
2ˇ2

(e−ˇ2(x′′
2
−x02)2 − e−ˇ2(x′

2
−x02)2

) + x02q2

)

2 =

⎛
⎝(a0 + a1x01 + a2x02)q1q2 + q1q2

m∑
j=3

ajxj

⎞
⎠

−a1q1q2

2ˇ1q1
(e−ˇ1(x′′

1
−x01)2 − e−ˇ1(x′

1
−x01)2

)

−a2q1q2

2ˇ2q2
(e−ˇ2(x′′

2
−x02)2 − e−ˇ2(x′

2
−x02)2

)

y doing this procedure successively we would have:

Rm =

⎛
⎝
⎛
⎝a0 +

m∑
j=1

ajx0j

⎞
⎠+

m∑
j=m+1

ajxj −
m∑

j=1

aj

2ˇjqj
(e

−ˇj(x
′′
j
−x0j)

2

− e
−

Rm =

⎛
⎝
⎛
⎝a0 +

m∑
j=1

ajx0j

⎞
⎠−

m∑
j=1

aj

2ˇjqj
(e

−ˇj(x
′′
j
−x0j)

2

− e
−ˇj(x

′
j
−x0j)

2

)

⎞
⎠

nd so,

ˆ(X0) = 1∏m
j=1qj

Rm =

⎛
⎝a0 +

m∑
j=1

ajx0j

⎞
⎠

−
m∑

j=1

aj

2ˇjqj
(e

−ˇj(x
′′
j
−x0j)

2

− e
−ˇj(x

′
j
−x0j)

2

)

ow, let Lj = x′′
j

− x′
j
; j = 1, 2, . . ., m

Lim
−x′→L /2

qj =
√

�

ˇj

(
�

(√
2ˇj

Lj

2

)
− �

(
−
√

2ˇj
Lj

2

))

0j j j

Lim
0j−x′

j
→Lj/2

qj =
√

�

ˇj

(
2�

(
Lj

√
ˇj

2

)
− 1

)
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x0j)
2

)

⎞
⎠ m∏

j=1

qj

j

and ultimately,

Lim
x0j − x′

j
→ Lj/2

j = 1, 2, . . . , m

ŷ(X0) =

(
a0 +

m∑
j=1

ajx0j

)
−

m∑
j=1

aj

2ˇjqj
(e−ˇj (Lj/2)2 − e−ˇj (−Lj/2)2

)

Lim
x0j − x′

j
→ Lj/2

j = 1, 2, . . . , m

ŷ(X0) = a0 +
m∑

j=1

ajx0j = y(X0)

Therefore, the proof of Theorem 2.3 is completed. �

Appendix D. Proof of Theorem 2.4

In one hand we have:

�X = X0 + (�x1, �x2, . . . , �xm)

y(X0 + �X) = y(X0) +
m∑

j=1

∂y(X0)
∂x0j

�xj =

⎛
⎝a0 +

m∑
j=1

ajxj

⎞
⎠

+
m∑

j=1

aj �xj

On the other hand according to Theorem 2.3:

ŷ(X0) =

⎛
⎝a0 +

m∑
j=1

ajx0j

⎞
⎠−

m∑
j=1

aj

2ˇjqj
(e

−ˇj(x
′′
j
−x0j)

2

− e
−ˇj(x

′
j
−x0j)

2

)

Therefore,

∂ŷ(X0)
∂x0j

= aj − aj

2ˇjqj
(2ˇj(x

′′
j − x0j)e

−ˇ(x′′
j
−x0j)

2

−2ˇj(x
′
j − x0j)e

−ˇj(x
′
j
−x0j)

2

)

Thus,

Lim
x0j−x′

j
→Lj/2

∂ŷ(X0)
∂x0j

= aj − aj

2ˇjqj

(
2ˇj

Lj

2
e−ˇ(Lj/2)2

−2ˇj

(
−Lj

2

)
e−ˇj(−Lj/2)2

)

 

 

Lim
x0j−x′

j
→Lj/2

∂ŷ(X0)
∂x0j

= aj −
ajLj

√
ˇj

√
�e

ˇjL
2
j

/4
(2�(Lj

√
ˇj/2) − 1)
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T

∑

w

[

[

[

[

[
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herefore,

ˆ(X0 + �X) = ŷ(X0) +
m∑

j=1

∂ŷ(X0)
∂x0j

�xj

ˆ(X0 + �X) =

⎛
⎝a0 +

m∑
j=1

ajxj

⎞
⎠+

m∑
j=1

aj �xj

−
m∑

j=1

ajLj

√
ˇj

√
�e

ˇjL
2
j

/4
(2�(Lj

√
ˇj/2) − 1)

�xj

ˆ(X0 + �X) = y(X0 + �X) −
m∑

j=1

ajLj

√
ˇj

√
�e

ˇjL
2
j

/4
(2�(Lj

√
ˇj/2) − 1)

�xj

ccordingly,

(y(X0 + �X) − ŷ(X0 + �X))2

=

⎛
⎝ m∑

j=1

ajLj

√
ˇj

√
�e

ˇjL
2
j

/4
(2�(Lj

√
ˇj/2) − 1)

�xj

⎞
⎠

2

herefore, Theorem 2.4 is proved. �

ppendix E. Proof of Theorem 2.5

Consider (9) that represents the squared error and set ˇj = 1/L2
j
.

e have:

�y)2 =

⎛
⎝ m∑

j=1

aj(xj − x0j)√
�e1/4(2�(

√
2/2) − 1)

⎞
⎠

2

�y)2 = 1

(
√

�e1/4(2�(
√

2/2) − 1))
2

⎛
⎝ m∑

j=1

aj(xj − x0j)

⎞
⎠

2

ccording to the polynomial inequality:

m∑
j=1

aj

⎞
⎠

2

≤
m∑

j=1

a2
j

e have:

m∑
j=1

aj(xj − x0j)

⎞
⎠

2

≤
m∑

j=1

a2
j (xj − x0j)

2

hus,

1

(
√

�e1/4(2�(
√

2/2) − 1))
2

m∑
j=1

a2
j (xj − x0j)

2 ≥ (�y)2
m

j=1

(xj − x0j)
2

b2
j

≥ (�y)2

here, bj = (
√

�e1/4(2�(
√

2/2) − 1))/aj .

[

[
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Now, consider the below equation:

m∑
j=1

(xj − x0j)
2

b2
j

= (�y)2

which represents equation of a hyperellipse where∑m
j=1(xj − x0j)

2/b2
j

is the upper bound of the squared error

for each point. Now, consider a special value such as (�y)2 for
squared error. All points which the upper bound of their squared
error,

∑m
j=1(xj − x0j)

2/b2
j
, is more than (�y)2 satisfy the below

inequality:

m∑
j=1

(xj − x0j)
2

b2
j

≥ (�y)2

These are the points located outside of a hyperellipse. Sim-
ilarly, all points which their upper bound of squared error,∑m

j=1(xj − x0j)
2/b2

j
, is less than (�y)2 satisfy the below inequality:

m∑
j=1

(xj − x0j)
2

b2
j

≤ (�y)2

These are the points inside a hyperellipse. When the upper bound
of squared error for a point is less than (�y2) implies that the exact
value of its squared error is less than (�y)2. Therefore, all points
which their exact value of squared errors are less than (�y)2 are
located inside a hyperellipse.

So, the proof of Theorem 2.5 is completed. �
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