
Transactions in Distributed Systems 

Sergio Caltagirone 

University of Idaho 

scaltagi@acm.org 

 
 

1. Introduction 

Everyone these days knows how convenient it is to have 

all of your files in one place.  Even with the rise of the 

personal computer from the thin clients of the past, the 

need is still there.  I, personally, have three personal 

computers, and it is very inconvenient not to have all of 

my files available on each system.  However, in the past, 

a distributed file structure was more necessity rather than 

convenience.  Because each client machine only had a 

small amount of RAM and disk space, the entire file 

system could not be kept on every machine.  Additionally, 

the problem of keeping all of those machines consistent 

was an enormous, if not impossible task.  If one client 

changed a file, every other client must also change the file 

in the same way so that each client has the most current 

version of the data.  This made a distributed file system 

necessary. 

 

However, the problems of a distributed storage system do 

not stop with consistency.  Other problems emerged as 

systems such as Andrew, Coda, Quicksilver, and NFS 

were developed and researched, problems such as 

performance, and availability.  As the storage systems 

grew away from the local machine, the problem of 

accessing and updating files in an efficient manner 

became apparent.  Saving your file over the network is 

never as quick as saving the file to local disk. 

 

Also, if the central file server is unavailable, or if your 

local client is no longer connected to the network (mobile 

environments), then how does the user continue to work 

and use the system?  Plus, if we choose to solve 

consistency with locking the file your using, then what 

effect does that have on the availability to users who want 

to read it?  These problems that were found in the 1980’s, 

were seriously studied by researchers, and have evolved 

into the distributed systems we see today, from NFS to 

mobile phone networks. 

 

This paper will discuss these issues with regard to 

distributed storage systems, and how research into 

transactions have helped alleviate some of these 

problems, while introducing some others.  The storage 

systems we will be concerned with are distributed file 

systems, and support for database systems.  Additionally, 

we will discuss how transaction research has evolved to 

meet the demands of new environments such as mobile 

computing, as well as the classic systems, ARGUS, Coda, 

and Quicksilver.  In the end, the reader should be 

informed as to the problems of transactions, their 

limitations, how those limitations have been overcome, 

the evolution of transaction research, and its application 

to multiple environments. 

2. Distributed File Systems 

A distributed file system is a system where files dispersed 

to non-local systems, but look local to the user accessing 

them.  An example of this would be that if my files were 

kept on another machine far away, but when I logged into 

my machine, they look and act as if they were right there. 

 

In [1], Chow and Johnson identify two characteristics of a 

distributed file system (DFS).  The two characteristics are 

dispersion and multiplicity.  There must be multiple files 

in multiple locations, and multiple users accessing those 

files in multiple locations.  Any system satisfying those 

characteristics would be considered a distributed file 

system.  What is important is that given these 

characteristics, to the user it must be transparent; in other 

words, it must seem as though there is one user working 

on a file that is in one place. 

 

The positive benefits of a distributed file system are that 

users can be on any client and access the files, fault 

tolerance can be easier to design for, easier to design 

security mechanisms to control file access, and multiple 

users can read/write a file at the same time (if designed 

correctly).  With these benefits, it is easy to see how 

distributed file systems became popular.  They provide a 

system the power to have many users with many locations 

access the same data.  However, there are serious 

problems to consider when researching a distributed file 

system; some of the most serious are described next. 

2.1. Architectures 

Distributed file systems come in two flavors, client-server 

and peer-to-peer.  Each architecture type has its own 

unique set of problems and solutions. 

2.1.1. Client-Server 

 



In a client-server architecture, a single machine, or set of 

machines act as designated servers, which hold the 

‘official’ copy of all files.  If a change to a file is made, 

then the changes are sent to the server, which then records 

those changes and updates the official copy so that any 

requests for that file receive the newest edition. 

 

However, this architecture has many problems.  First, if 

the server is unavailable, then the files are unavailable 

because no copies of those files exist in the system 

outside of the server.  Additionally, if there are a lot of 

requests for a file, then the server can be overloaded 

causing it to neglect its duties to some of the clients. 

 

The client-server architecture though has many merits.  

First, it is very simple to design and implement.  Second, 

the need for infrastructure is minimized.  It also helps 

solve many consistency problems (as described in the 

next section).  

2.1.2. Peer-to-Peer 

 

In a peer-to-peer architecture, each client machine keeps 

its own unique piece of the file structure.  If another client 

needs a file that it doesn’t have, then it simply contacts 

the client that does have it, and it is sent to them.  

However, this architecture requires one more component, 

a directory server.  This server will tell each client where 

the parts of the file structure are stored; so that when they 

are needed a client looks up what client has that file and 

then goes and requests it. 

 

There are several problems with peer-to-peer; the first is 

that if one client is unavailable, that section of the file 

system is similarly unavailable.  Secondly, depending on 

network topology, the communication latency may be 

greater. 

 

However, there are several positive issues that come alone 

with a peer-to-peer architecture.  First is the issue of fault 

tolerance, if one machine is unavailable, only that section 

of the file system is lost and no others – so any user 

working on another file from another client is unaffected.  

Second, is that it is more difficult to overwhelm many 

clients than it is to overwhelm one server. 

3. Problems with DFS 

Although a distributed file system (DFS) provides system 

managers and users many benefit, its design is also 

fraught with many problems.  These problems are 

complicated even further when it is discovered that to 

decrease one problem leads to an increase of at least one 

of the others.  Therefore, each DFS must decide what are 

its primary (realistic) goals, and be designed to meet those 

goals. 

3.1. Consistency 

The problems of a distributed file system begin with the 

problem of consistency.  Consistency attempts to say that 

every user will be working with the same data at all times.  

For example, if user A writes file X, then whenever user 

B reads file X will see the changes that A made.  

Additionally, if user A writes to file X, and user B writes 

to file X, both users will not write over each other, plus be 

able to see each other’s changes. 

 

However, that example is one from an ideal world.  In the 

real world, it is very difficult to achieve that amount of 

consistency, at least without sacrificing performance or 

availability to a greater extent.  To solve this problem, 

DFSs implement many mechanisms to improve 

consistency.  Some of them are: locking, sharing, 

transactions, and message passing. 

3.2. Performance 

The problem of performance comes from many parts of a 

distributed file system.  Part of the performance problem 

is latency.  This latency is usually derived from a 

network.  When a user requests a document, it takes time 

to transfer that document (or part of the document) across 

the network.  This is because networks are very slow 

compared to the local system, and a poorly designed DFS 

can frustrate users and cause consistency issues.  This is 

because a user may be reading a document before the 

changes of another user arrive via the network. 

 

In addition to receiving a file through the network, 

another part of a DFS that causes performance issues is 

propagation of messages.  As described before, if a user 

changes a file, then everywhere else that file is kept needs 

to know about those changes to update that file.  

However, it takes time for those messages to be sent, 

travel, be received, and changes executed.  And 

depending on the system, if every change is sent over the 

network, then a user working on a document can be 

frustrated because the computer’s resources are being 

spent on sending messages rather than editing the 

document. 

3.3. Availability 

Availability refers to a users ability to interact with the 

system at a given time.  With distributed file systems, 

availability refers to the ability of a user to either read or 

write to a file when they want to.  The problem of 

availability is strongly connected to the problem of 

consistency. 

 



The issue of consistency is that it is difficult to support 

two users writing to a file at the same time (write-write), 

or one user reading and one user writing (read-write).  To 

solve this, most DFSs attempt to limit the availability of a 

resource while a write is occurring.  On the other hand, a 

DFS might instead abandon consistency in certain 

situations and accept that a user will be reading old data. 

4. Transactions 

Transactions were suggested as a method of solving these 

problems with distributed file systems.  More specifically, 

transactions directly apply to the problem of consistency, 

but by doing so also speak to the problem of availability, 

which then allows a DFS to support better performance.  

All of which enhance the overall structure of a distributed 

file system. 

4.1. Definition 

Specifically, a transaction is a sequence of events that are 

treated as a fundamental unit of access. [1] Generally 

however, a transaction has three properties. [2] The first 

property is consistency.  Consistency with regards to a 

transaction means that a transaction does what it is 

supposed to do, correctly.  The second property is 

atomicity.  Atomicity means that either the transaction is 

successful and executes correctly, or it doesn’t – the 

transaction cannot only partially execute.  The third 

property is durability.  Durability is the property that 

guarantees that once a transaction is done, it cannot be 

undone; but the effects can be reversed by another 

transaction. 

4.2. Gray’s Model of a Transaction 

In Jim Gray’s seminal paper on transactions, he presented 

several important ideas of transactions; one of those was a 

model of what a transaction is to a computer system. [2] 

In the model, a system is nothing more than a sequence of 

states.  A transaction, therefore, is nothing more than a 

tool that transforms the system from one consistent state 

to another.  Since a transaction is atomic and durable, a 

transaction has only two outcomes: commit, where the 

transaction was successful and the system has changed 

states, or abort, where the transaction failed and the 

system has not changed states. 

 

A transaction may contain several actions, which 

themselves are transactions.  Therefore, a transaction may 

be simple or complex.  A simple transaction is one that is 

simply a series of actions.  A complex transaction is one 

that contains one or more transactions, and may contain 

concurrency (multiple running at once) and conditional 

logic (one may run dependent on the outcome of another).  

However, in the case of complex transactions, the internal 

transactions, although following the same principles as 

the primary transaction, are invisible to the system – it 

looks like a simple transaction to anyone but the 

transaction. 

4.3. How to Build a Transaction System 

Its nice that Gray provided such a nice model of what a 

transaction is.  But how can a transaction system be built?  

Gray also provides some solutions to that question in the 

same paper. [2] Gray provides two example solutions, 

Time-Domain Addressing, and Logging and Locking.  

Each of these provides a different approach to 

implementing the transaction concept. 

4.3.1. Time-Domain Addressing 

 

The problem with most systems, as Gray describes, is that 

most systems overwrite the old object with the new object 

– thereby removing any opportunity to rollback and to 

document the changes to the system (necessary if a 

transaction fails).  One solution is time-domain 

addressing, where an object is evolved by appending the 

new value to it (rather than replacing it), while “the old 

value continues to exist and may be addressed…”[2] This 

solution is somewhat equivalent to versioning the objects 

in the system – older versions continue to exist and are 

cataloged. 

 

However, this system has some serious flaws.  The 

probably is that not only do the old values need to be kept 

of an object, but the entire chain of dependencies, “so that 

if an error was discovered, the compensating transaction 

could be propagated to each transaction that depended on 

the erroneous data.” [2] The information, because of this 

flaw, was found to grow exponentially – which is a 

problem for systems with limited storage space. 

 

Another problem is that I/O activity is increased because 

each time an object is read, then a write has to be 

performed on the object documenting the write.  

However, these problems are performance issues and do 

not have any bearing on the actual effectiveness of a 

transaction. 

4.3.2. Logging and Locking 

 

Gray attributes the idea of logging to the Greeks.  Gray 

notes that “the basic idea of logging is that every 

undoable action must not only do the action but must also 

leave behind a string…which allows the operation to be 

undone.” [2] The same technique must also be applied to 

redoable actions.  The logs should be kept in stable 

storage so that the system and the log have “independent 

failure modes.” 



 

Then to reconstruct a transaction, a new transaction is 

created which then reads the log and simply reconstructs 

the old state.  The log does not have to keep the entire 

state of an object, but only the changed parts or fields.  

The problem with this solution is that is difficult to 

support concurrent transactions. 

 

Therefore, Gray proposes a locking mechanism.  Each 

object, as it is being accessed is locked.  However, there 

are two types of locks: update locks, and reader locks.  

This allows a writer to lock an object for reading, but 

allows multiple readers to access the object concurrently. 

4.4. Limitations of Transactions 

Gray notes that although the concept of a transaction is 

very helpful to certain problem domains, such as airline 

reservations, banks, and car rentals, there are some 

limitations that exist.  The three limitations that are 

discussed are nested transactions, transaction duration, 

and transaction programming. 

4.4.1.  Nested Transactions 

 

Although a transaction may look like a single, atomic 

function which implements a sequence of actions, those 

actions, at the next lower level of abstraction may indeed 

be transactions.  The problem is that undoing a transaction 

requires a compensating transaction, which in turn, must 

undo all of the underlying transaction, which were 

encapsulated in the one being undone. 

4.4.2. Transaction Duration 

 

Most transactions are assumed to last only a few seconds 

or less.  But what of transactions which are expected to 

last days or longer?  So far, we have sidestepped the 

problem of deadlock because it is very uncommon with 

transactions, even when there are hundreds of concurrent 

transactions every instant.  However, as the lifetime of a 

transaction is increased, the probability of a deadlock 

occurring similarly increases.  In fact, “the frequency of 

deadlock goes up with the square of the 

multiprogramming level and the fourth power of the 

transaction size.” [2] Therefore, deadlock becomes a very 

important issue. 

 

Gray suggests that the method of solving this problem 

involves decreasing the amount of consistency that is 

achieved by the transactions; and also decrease the 

number of locks, limiting locks to only active transactions 

– or ones that update an object.  However, Gray notes that 

there is no basis to how well this “trick can be 

generalized.” [2] 

4.4.3.  Transaction Programming 

 

The third and last problem of transactions that Gray 

identifies is that of a separation of the concept of a 

transaction with a programming language.  The problem 

is how do you implement the concept of a transaction in 

the system such that it is guaranteed that all of the 

properties hold?  Here, Gray thinks that by including the 

language of BEGIN, SAVE, COMMIT, and ABORT, and 

also that objects generate undo and redo logs, 

programming languages can easily support transactions. 

[2]  

 

In [3], Liskov and Scheifler discuss their implementation 

of a system, ARGUS, which was designed for the express 

purpose of supporting robust and distributed programs.  

More specifically, ARGUS was the first system to support 

atomicity at both the language and hardware level.  Their 

system allowed for a fault resilient implementation, where 

if an atomic action failed, the system would automatically 

retain consistency – even with concurrent actions. 

 

They supported this functionality using a simple locking 

model.  In the model, the usual locking rules applied: 

“multiple readers are allowed, but readers exclude writers, 

and a writer excludes readers and other writers.”  

Additionally, with the occasion of every lock, a version of 

the object is made previous to the lock for the purpose of 

recoverability.  However, if the action was successful the 

stored version of the object was discarded, with a log kept 

of the change for later reversal if necessary.  The system 

also supported actions with multiple, concurrent, nested 

actions. 

 

The actual language implementation relied on two 

concepts, guardians and handlers.  Guardians are 

dynamically created processes that run at each node and 

control the access to resources for processes at that node.  

The guardians execute the handlers and synchronize them 

regarding access to resources.  If the system crashes, the 

guardian is recreated which then reinitializes the objects 

and resumes computation. 

 

The handlers are wrappers for transactions.  They allow 

the system to gracefully handle exceptions and errors in 

actions.  They also abstract transaction actions away from 

the guardians.  By doing this, nested actions and 

concurrency is easily supported.  ARGUS is a good 

example of how transaction support can be implemented 

in both hardware and software to build a fault resilient, 

concurrent, and consistent system. 

5. Database Systems 

The concept of a transaction first came from the database 

research community.  It is relevant, therefore, that this 



paper at least discuss some of the issues that were 

presented in that forum.  Specifically, how a distributed 

system can support a transaction based database system. 

 

Two of the most important aspects for a database 

management system, with regard to the operating system 

support are crash recovery and consistency. [4] Since the 

database relies heavily on the underlying operating 

system to provide a file system to store the database data, 

then there is, of course, a strong need by a database to 

utilize the operating system for protection of those files 

against crashes and inconsistencies.  Support for these 

protections are usually implemented using transactions. 

5.1. Crash Recovery 

The purpose of recovery is “used to restore data in a 

system to a usable state.” [5] Verhofstad provides seven 

techniques for recovery, but only three will be discussed: 

audit trail, differential files, and backup/current versions. 

An audit trail is a record of the sequences of actions taken 

on the system.  A differential file records all of the 

alterations made to objects in the system.  The 

backup/current version technique is a method of 

containing previous values of objects so that they can be 

later recovered. [5] 

 

Notice how audit trail and differential files mechanism, 

which is the logging of all actions taken on the system 

compares to the locking and logging concept of 

transaction implementation given by Gray (discussed 

earlier).  Also notice that the idea of keeping backup 

versions is similar to the time-domain addressing also 

discussed by Gray.  This implies that transactions can be 

used implicitly to support recovery of a database. 

 

Additionally, Stonebreaker in [4] describes crash recovery 

as applying to the abortion of a transaction in mid action – 

causing the system to revert to a state previous to the start 

of the transaction (since transactions are all or nothing).  

According to Stonebreaker, a database management 

system accomplishes this through the use of an intentions 

list.  An intentions list is a record of all of the updates 

performed on a database by the transactions.  

Transactions make this system work because after a 

transaction has accessed and updated the database, its last 

step is to maintain the intentions list by including the 

actions it performed.  At this point the commit flag is set, 

indicating the transaction was successful, and the 

intentions list is forced to disk so as to be protected in the 

event of a crash. 

 

During recovery, the database management system 

examines the intentions list and processes the actions to 

return the system to the pre-crash consistent state.  

However, if the transaction was not complete, the 

transaction did not set the commit flag, and therefore 

those actions are not performed – thereby backing out of 

the transaction. 

5.2. Consistency 

Stonebreaker argues that transaction support for crash 

recovery and consistency should completely reside in the 

operating system because it would negatively impact 

buffer management.  For consistency control, this is a 

problem because buffer management is what determines 

the level of consistency in the operating system.  The 

argument is that when a transaction completes, it is 

usually acting within user space buffers, a commit signal 

then needs to be sent to the kernel so that these buffers 

can be sent to disk.  However, therefore a buffer manager 

must have knowledge of transactions, and the 

functionality of transactions is duplicated in both the 

database management system and the operating system; 

which is unnecessary and forces the database to do some 

of its own buffering. [4] 

 

However, most operating systems are not fast enough to 

provide consistency control for the database, and 

therefore until operating systems improve for database 

environments, the best choice is for databases to provide 

their own control. [4] 

6. Mobile Computing 

A mobile computing environment is unique from almost 

all others.  It is unique because it faces several challenges 

that originate from both its environment and goals.  One 

of those problems is disconnected operation, most mobile 

systems continually move in and out of the network, 

while their users expect that at least most of the 

functionality (including modifying distributed files) 

remain unaffected.  Therefore, the goals of the system are 

too not only make its distributed nature transparent from 

the user, but also make network connectivity transparent. 

 

This poses a gigantic problem for consistency.  If a user is 

updating an object without contact to a network, what of 

other users attempting to read the object?  Obviously, if 

there is no connectivity, the readers will not be able to see 

the changes being made to the object outside of the 

network.  Additionally, what if another user is updating 

an object on the network, while the user is changing the 

object off the network?  What happens when the user 

reenters the network – which changes over-ride? 

6.1. Isolation-Only Transactions 

The Coda file system, based out of Carnegie Mellon 

University, has already addressed these problems in an 



ingenious and very efficient manner.  Their goal was to 

provide disconnected operation to a user through “a 

special form of client disk caching…” [6] In this way, 

when the client is disconnected, all services to the file are 

based on its local cache, but when the client is 

reconnected to the network, the updates are reintegrated 

into the distributed file system. 

 

To implement this reintegration, the designers of Coda 

turned to transactions, specifically isolation-only 

transactions (IOT).  Isolation-only transactions are a 

sequence of file access operations that guarantee certain 

properties that are relevant to mobile environments.  

However, IOTs do not guarantee atomicity and only 

conditionally guarantee durability (permanence).   

Therefore, if a transaction fails, it may leave the system in 

an inconsistent state, and that a transaction, once 

executed, may not be permanent. 

 

An IOT works by executing the entire transaction on the 

client’s local disk cache, where the transaction does not 

access any remote files and the actions are logged.  If the 

client is connected, then the transaction is committed to 

the network, otherwise the transaction is said to be 

pending until the client connects the network.  To other 

processes on the client, the pending transaction is treated 

as committed. 

 

However, to commit a transaction, a validation is 

necessary.  For a transaction to be considered valid, and 

therefore committed, it must satisfy the isolation property 

– where the results of the interleaved execution are 

equivalent to the serial execution of the same actions on 

just the client’s local cache.  Additionally, it must be 

globally serializable, meaning that the set of actions that 

were executed on the client’s cache can be added to the 

global (network) set of actions and the system and still be 

considered serializable.  If the transaction satisfies these 

properties, then the updated files are transferred onto the 

network overwriting the previous copies. [6] 

 

If a transaction is not found to satisfy these properties, 

then a series of resolution options exist.  Lu and 

Satyanaranyanan present four options. [7] The first is re-

executing the transaction on the up-to-date files, if no 

inconsistencies can be found to exist.  The second option 

is to invoke the transaction’s application specific resolver.  

This option attempts to request that the application that 

created the files resolve the conflict using application 

specific knowledge about the files.  The third option is to 

abort the transaction(s) that are not compliant.  The 

fourth, and last, option includes notifying the user so that 

they can manually resolve the inconsistencies.  

 

The problem is that although these options attempt to 

exhaust all ways to resolve consistencies, it cannot 

guarantee that even though the user executed the 

transaction, the transaction will eventually be accepted 

and committed globally.  Additionally, if a transaction is 

executed on the local disk cache, when reconnected to the 

global system, it may cause inconsistencies.  To solve 

this, we attempt to resolve the inconsistencies, but if they 

are irresolvable, then the transaction is discarded. 

 

Although these problems with consistency are serious, the 

problem of disconnected operation is very difficult, and 

this may potentially be an excellent solution to the 

problem.  Overall, the system seems to work well and can 

solve most problems, especially if the transaction 

granularity is small enough – the probability of a conflict 

is greatly reduced and the value of the system is 

increased. [6] 

7. Quicksilver 

It is sometimes helpful to get the prospective of additional 

case studies on a subject, this is the intention of this 

section.  In 1988, IBM Almaden Research Center built a 

distributed operating system called QuickSilver, and 

utilized atomic transactions as their chosen failure 

recovery mechanism.  They documented their research in 

[8]. What is unique about QuickSilver is that their 

transaction protocols and logs were exposed to clients and 

servers, allowing them to “tailor their recovery techniques 

to their specific needs.”  They defend that this choice was 

made to “allow servers to make their own choices to 

balance simplicity, efficiency, and recoverability.” [8] As 

seen earlier, most systems hide these in either a 

programming language or the operating system. 

 

The problem QuickSilver faced was that they were built 

on the client-server architecture.  Therefore, the server 

was required to document the state of the clients; which 

caused problems because each needed to be aware of the 

failure states of the other.  If a server crashes, it must 

therefore recover quickly and cleanly for obvious reasons.  

 

QuickSilver utilizes transactions to recover from many 

types of failures, global memory, client crashes, server 

crashes, and file system failures; all which rely on the 

transactions to rely on the file system to recover their 

state.  The QuickSilver implementation includes three 

components, a transaction manager which manages 

commit coordination between the servers, a log manager 

which keeps the common recovery log, and the deadlock 

detector which detects deadlocks and aborts the 

transactions causing the deadlock. 

 

How the system works, is that clients and servers utilize 

IPC message passing.  Every IPC message belongs to a 

transaction, which has its own unique id, and that id is 

communicated within the message.  When a server 



accepts a message and then executes the action on behalf 

of that transaction.  The transaction manager places the 

message in the protocol, which is then logged using the 

log manager.  The deadlock detector is always running in 

the process, monitoring transactions to make sure they are 

always making progress and never waiting in a deadlock 

scenario. 

 

There are several protocols that QuickSilver can manage, 

and each server communicates its own commit protocol.  

The two basic models of commit protocols are the one-

phase and the two-phase commit.  The one-phase protocol 

is very simple; a server transmits a transaction, and is 

notified that the transaction is complete.  The two-phase 

protocol includes two steps, one locking the resource, and 

two, unlocking the resource when it is done. [1] The two-

phase protocol is must more reliable with regard to 

consistency control. 

 

If the system experiences a failure, then the node that 

experienced the failure contacts its Log Manager who 

then furnishes the log which the transaction manager can 

utilize to reconstruct the last consistent state on the node. 

Notice that each node drives its own recover, which the 

authors admit can decrease performance; but this 

performance hit can managed by using replicated logs, 

and backpointers, which allow a server to modify data in 

place and reply their aborted transactions. [8] 

 

In the end, the researchers concluded that the recovery 

manager mechanism was efficient enough for most 

systems, while also minimizing the number of 

communication messages and CPU overhead.  The 

QuickSilver system also acted as a proof-of-concept for 

the server-driven recovery process and algorithms.  

Overall, the system was very well designed and 

performed well in the bench tests provided in the paper.  

However, they note that future work needed to be done 

with nested transactions and object managers. [8] 

8. Conclusion 

This paper has attempted to give the reader an overview 

of the seminal research accomplished with regard 

transactions in distributed systems, while focusing on 

storage systems.  It began with an overview of what a 

distributed file system is, and the problems associated 

with that model.  It then described Gray’s original work 

with transaction models while noting some of the 

limitations of transactions.  These limitations, as seen in 

the paper, with further research, have been able to be 

overcome – and successful implementations have been 

developed. 

 

The second part of the paper described the original work 

in transactions in the database system research 

community.  To contrast this, the next section described 

some more contemporary work done with transactions in 

mobile environments.  And finally, the paper presented 

one of the early, and successful, implementations of 

transactions with regard to distributed operating systems 

as applied to recovery. 

 

Overall, the reader should now better understand the 

evolution of the transaction research, the problems that 

were discovered, and the methods and implementations 

that were used to solve them.  Additionally, the reader 

should also see how transactions are used to solve the 

problems of a distributed file system, both classic and in a 

mobile environment.  Lastly the reader should understand 

the utility of the transaction model, and that while 

limitations exist, they can be successfully overcome. 

9. References 

 

[1] R. Chow and T. Johnson, Distributed Operating 

Systems and Algorithms. Reading, 

Massachusetts: Addison-Wesley, 1997. 

[2] J. Gray, "The Transaction Concept: Virtues and 

Limitations," presented at 7th International 

Conference of Very Large Databases, 1981. 

[3] B. Liskov and R. Scheifler, "Guardians and 

Actions: Linguistic Support for Robust, 

Distributed Programs," ACM Transactions on 

Programming Languages and Systems, vol. 5, 

pp. 381-404, 1983. 

[4] M. Stonebraker, "Operating System Support for 

Database Management," Communications of the 

ACM, vol. 24, pp. 412-418, 1981. 

[5] J. S. M. Verhofstad, "Recovery Techniques for 

Database Systems," Computing Surveys, vol. 10, 

pp. 167-195, 1978. 

[6] Q. Lu and M. Satyanaranyanan, "Isolation-Only 

Transactions for Mobile Computing," Operating 

Systems Review, vol. 28, pp. 81-87, 1994. 

[7] Q. Lu and M. Satyanarayanan, "Improving Data 

Consistency in Mobile Computing Using 

Isolation-Only Transactions," presented at 5th 

IEEE HotOS Topics Workshop, Orcas Island, 

WA, 1995. 

[8] R. Haskin, Y. Malachi, W. Sawdon, and G. 

Chan, "Recovery Management in Quicksilver," 

ACM transactions on Computer Systems, vol. 6, 

pp. 82-108, 1988. 

 


	Transactions in Distributed Systems
	1. Introduction
	2. Distributed File Systems
	2.1. Architectures
	2.1.1. Client-Server
	2.1.2. Peer-to-Peer


	3. Problems with DFS
	3.1. Consistency
	3.2. Performance
	3.3. Availability

	4. Transactions
	4.1. Definition
	4.2. Gray’s Model of a Transaction
	4.3. How to Build a Transaction System
	4.3.1. Time-Domain Addressing
	4.3.2. Logging and Locking

	4.4. Limitations of Transactions
	4.4.1.  Nested Transactions
	4.4.2. Transaction Duration
	4.4.3.  Transaction Programming


	5. Database Systems
	5.1. Crash Recovery
	5.2. Consistency

	6. Mobile Computing
	6.1. Isolation-Only Transactions

	7. Quicksilver
	8. Conclusion
	9. References


