
Intensity-based Credit
Risk Models

Reduced-form credit risk models have become
standard tools for pricing credit derivatives and for
providing a link between credit spreads and default
probabilities. In structural models, following the
Merton approach [1, 12], default is defined by a firm
value hitting a certain barrier. In such an approach,
the concept of credit spread is rather abstract since it
is not modeled explicitly and therefore is not directly
accessible and may also have dynamics that are not
completely pleasing. Reduced-form models, however,
concentrate on modeling the hazard rate or intensity
of default, which is directly linked to the credit spread
process. In contrast to a structural approach, the event
of default in a reduced-form model comes about as a
sudden unanticipated event (although the likelihood
of this event may have been changing).

Deterministic Hazard Rates

Risk-neutral Default Probability

The basic idea around pricing default sensitive prod-
ucts is that of considering a risky zero-coupon bond
of unit notional and maturity T . We write the payoff
at maturity as

C(T , T ) =
{

1 default
δ no default

(1)

where δ is an assumed recovery fraction paid imme-
diately in the event of default. The price of a risky
cash flow due at time T is then

C(t, T ) = [S(t, T ) + [1 − S(t, T )]δ]B(t, T ) (2)

with B(t, T ) denoting the risk-free discount factor for
time T as seen from time t , S(t, T ) is the risk-neutral
survival (no default) probability (see Hazard Rate)
in the interval [t, T ] or, equivalently, 1 − S(t, T )

is the risk-neutral default probability. This style of
approach was developed by Jarrow and Turnbull
[8, 9].

Pricing a Credit Default Swap (CDS)

A credit default swap (CDS) (see Credit Default
Swaps) has become a benchmark product for trading

credit risk and hence we base most of our analysis
around CDS pricing. Standard assumptions used in
pricing CDS include deterministic default probabil-
ities, interest rates, and recovery values (or at least
independence between these three quantities). In a
CDS contract, the protection buyer will typically pay
a fixed periodic premium, XCDS, to the protection
seller until the maturity date or the default (credit
event) time (T ). The present value of these premiums
at time t can be written as

Vpremium(t, T ) =
m∑

i=1

S(t, ti)B(t, ti)�i−1,iXCDS (3)

where m is the number of premium payments and
�i−1,i represents the day count fraction.

The protection seller in a CDS contract will
undertake in the event of a default to compensate
the buyer for the loss of notional less some recovery
value, δ. The value of the default component obtained
by integrating over all possible default times is given
by

Vdefault(t, T ) = (1 − δ)

T∫
t

B(t, u) dS(t, u) (4)

Note that due to the required negative slope of
S(t, u), this term will be negative; hence, the sum
of equations (3) and (4) defines the value of a CDS
from a protection provider’s point of view.

Defining the Hazard Rate

In pricing a CDS, the main issue is to define S(t, u)

for all relevant times in the future, t ≤ u ≤ T . If
we consider default to be a Poisson process driven
by a constant intensity of default, then the survival
probability is

S(t, u) = exp[−h(u − t)] (5)

where h is the intensity of default, often described
as the hazard rate. We can interpret h as a forward
instantaneous default probability; the probability of
default in a small period dt conditional on no prior
default is h dt . Default is a sudden unanticipated
event (although it may, of course, have been partly
anticipated due to a high value of h).

Link from Hazard Rate to Credit Spread

If we assume that CDS premiums are paid
continuously,a then the value of the premium
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payments can be written as

Vpremium(t, T ) ≈ XCDS

T∫
t

B(t, u)S(t, u) du (6)

Under the assumption of a constant hazard rate
of default, we can write dS(t, u) = −hS(t, u) du and
the default payment leg becomes

Vdefault(t, T ) = −(1 − δ)h

T∫
t

B(t, u)S(t, u) du (7)

The CDS spread will be such that the total
value of these components is zero. Hence from
Vpremium(t, T ) + Vdefault(t, T ) = 0 we have the simple
relationship

h ≈ XCDS

(1 − δ)
(8)

The above close relationship between the hazard
rate and CDS premium (credit spread) is important in
that the underlying variable in our model is directly
linked to credit spreads observed in the market. This
is a key advantage over structural models whose
underlying variables are rather abstract and hard to
observe.

Simple Formulas

Suppose we define the risk-free discount factors via
a constant continuously compounded interest rate
B(t, u) = exp[−r(u − t)]. We then have closed-form
expressions for quantities such as

Vpremium(t, T )/XCDS

≈
T∫

t

exp[−(r + h)(u − t)] du

= 1 − exp[−(r + h)(T − t)]

r + h
(9)

The above expression and equation (8) allow a
quick calculation for the value of a CDS, or equiv-
alently a risky annuity or DV01 for a particular
credit.

Incorporating Term Structure

For a nonconstant intensity of default, the survival
probability is given by

S(t, u) = exp


−

u∫
t

h(x) dx


 (10)

To allow for a term structure of credit (e.g., CDS
premia at different maturities) and indeed a term
structure of interest rates, we must choose some
functional form for h. Such an approach is the
credit equivalent of yield curve stripping, although
due to the illiquidity of credit spreads much less
refined, and was first suggested by Li [10]. The
single-name CDS market is mainly based around
5-year instruments and other maturities will be rather
illiquid. A standard approach is to choose a piecewise
constant representation of the hazard rate to coincide
with the maturity dates of the individual CDS quotes.

Extensions

Bonds and Basis Issues

Within a reduced-form framework, bonds can be
priced in a similar way to CDS:

Vbond(t, T )=
m∑

i=1

S(t, ti)B(t, ti)�i−1,iXbond

+ S(t, T )B(t, T ) − δ

T∫
t

B(t, u) dS(t, u)

(11)

The first term above is similar to the default
payment on a CDS but the assumption here is that
the bond will be worth a fraction δ in default. The
second and third terms represent the coupon and
principal payments on the bond, respectively. It is
therefore possible to price bonds via the CDS market
(or vice versa) and indeed to calibrate a credit curve
via bonds of different maturities from the same
issuer. However, the treatment of bonds and CDS
within the same modeling framework must be done
with caution. Components such as funding, the CDS
delivery option, delivery squeezes, and counterparty
risk mean that CDS and bonds of the same issuer
will trade with a basis representing nonequal risk-
neutral default probabilities. In the context of the
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formulas, the components creating such a basis would
represent different recovery values as well as discount
factors when pricing CDS and bonds of the same
issuer.

Stochastic Default Intensity

The deterministic reduced-form approach can be
extended to accommodate stochastic hazard rates
and leads to the following expression for survival
probabilities:-

S(t, u) = EQ


exp


−

u∫
t

h(x) dx





 (12)

This has led to various specifications for mod-
eling a hazard rate process with parallels with
interest-rate models for modeling products sensi-
tive to credit spread volatility with examples to be
found in [4, 5, 11]. Jarrow et al. [7] (see Jar-
row–Lando–Turnbull Model) have extended such
an approach to have a Markovian structure to model
credit migration or discrete changes in credit qual-
ity that would lead to jump in the credit spread.
Furthermore, credit hybrid models with hazard rates
correlated to other market variables, such as inter-
est rates, have been introduced. For example, see
[13].

Portfolio Approaches

The first attempts at modeling portfolio credit prod-
ucts, such as basket default swaps and CDOs,
involved multidimensional hazard rate models. How-
ever, it was soon realized that introducing the level
of default correlation required to price such prod-
ucts realistically was far from trivial. This point
is easily understood by considering that two per-
fectly correlated hazard rates will not produce per-
fectly correlated default events and more complex
dynamics are required such as those considered
by Duffie [3]. Most portfolio credit models have
instead followed structural approaches (commonly
referred to as copula models with the so-called Gaus-
sian copula model becoming the market standard
for pricing CDOs; see Gaussian Copula Model)
for reasons of simplicity. Schonbucher and Schu-
bert [14] have shown how to combine intensity
and copula models. More recently, the search for

more sophisticated portfolio credit risk modeling
approaches is largely based around reduced-form
models as in [2] and [6] (see Multiname Reduced
Form Models).

Conclusions

We have outlined the specification and usage of
reduced-form models for modeling a default process
and described the link between the underlying in such
a model and market observed credit spreads. We have
described the application of such models to vanilla
credit derivative structures such as CDS and also
more sophisticated structures such as credit spread
options, credit hybrid instrument, and portfolio credit
products.

End Notes

a.CDS premiums are typically paid quarterly in arrears but
an accrued premium is paid in the event of default to
compensate the protection seller for the period for which
a premium has been paid. Hence the continuous premium
assumption is only a mild approximation.
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Default Barrier Models

The modeling of default from an economic point of
view is a great challenge due to the binary and low
probability nature of such an event. Default barrier
models provide an elegant solution to this challenge
since they link the default event to the point at
which some continuously evolving quantity hits a
known barrier. In structural models of credit risk (see
Structural Default Risk Models) the process and the
barrier are interpreted in terms of capital structure of
the firm as the value of the firm and its liabilities.
More generally, one can view the process and the
barrier as state variables that need not necessarily
observable.

Single-name Models

In the classic Merton framework [12], the value of
a firm (asset value) is considered to be stochastic
and default is modeled as the point where the firm
is unable to pay its outstanding liabilities when they
mature. The asset value is modeled as a geometric
Brownian motion:

dVt

Vt

= µdt + σdW (1)

where µ and σ represent the drift and volatility of the
asset, respectively, and dW is a standard Brownian
motion. The original Merton model assumes that a
firm has issued only a zero-coupon bond and will not
therefore default prior to the maturity of this debt as
illustrated in Figure 1. Denoting the maturity and face
value of the debt by T and D respectively, the default
condition can then be written as VT < D. Through
option pricing arguments, Merton then provides a link
between corporate debt and equity via pricing formu-
lae based on the value of the firm and its volatility
(analogously to options being valued from spot prices
and volatility). The problem of modeling default is
transformed into that of assessing the future distribu-
tion of firm value and the barrier where default would
occur. Such quantities can be estimated nontrivially
from equity data and capital structure information.
This is then the key contribution of Merton approach
in that low-frequency binary events can be modeling
via a continuous process and calibrated using high-
frequency data.

Practical Extensions of the Merton Approach

The classic Merton approach has been extended
by many authors such as Black and Cox [2] and
Leland [10]. Commercially, it has been developed
by KMV (now Moody’s KMV) with the aim
of predicting default via the assessment of 1-year
default probability defined as EDF (expected default
frequency). A more recent and related, although
simpler, approach is CreditGrades.

Moody’s KMV Approach. This approach [8, 9]
was inspired by the Merton approach to default
modeling and aimed to lift many of the stylized
assumptions and model the evolution and future
default of a company in a realistic fashion. A key
aspect of this is to account for the fact that a firm may
default at any time but will not necessarily default
immediately when they are bankruptcy insolvent
(when Vt < D). Hence a challenge is to work out
exactly where the default barrier is. KMV do this
via considering both the short-term and long-term
liabilities of the firm. Their approach can be broadly
summarized in three stages:

• estimation of the market value and volatility of a
firm’s assets;

• calculation of the distance to default which is an
index measure of default risk; and

• scaling of the distance to default to the actual
probability of default using a default database.

The distance to default (DD) measure, represent-
ing a standardized distance from which a firm is
above its default threshold, is defined bya

DD = ln(V/D) + (µ − 0.5σ 2)T

σ
√

T
(2)

V

D

Figure 1 Illustration of the traditional Merton approach
to modeling default based on the value of the firm being
below the face value of debt at maturity
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The default probability would then be given by
pd = �(−DD). A key element of the approach is to
recognize the model risk inherent in this approach and
rather to estimate the default probability empirically
from many years of default history (and the calculated
DD variables). We therefore ask ourselves the follow-
ing question: for a firm with a DD of 4.0 (say), how
often have firms with the same DD defaulted histori-
cally? The answer is likely to be considerably higher
than the theoretical result of �(−4.0) = 0.003%.
This mapping of DD to actual default probability
could be thought of as an empirical correction for
the non-Gaussian behavior of firm value.

CreditGrades Approach. The aim of CreditGrades
is rather similar to that of KMV except that
the modeling framework [3] is rather simpler, in
particular without using empirical data in order to
map to an eventual default probability. In the Credit
Grades approach, the default barrier is given by

LD = LDeλZ−λ2/2 (3)

where Z is a standard normal variable, D is the
“debt per share”, L is an average recovery level,
and λ creates an uncertainty in the default bar-
rier. The level of the default barrier and the asset
return are independent. Hence the main differences
between the traditional Merton approach and Cred-
itGrades is that the latter approach assumes that
default can occur at any time when the asset
process has dropped to a level of LD, whereas
the Merton framework assumes L = 1 and λ = 0
and no default prior to the maturity of the debt.
CreditGrades recommends values of L = 0.5 and
λ = 0.3. A sensitivity analysis of these parameters
should give the user a very clear understanding
of the uncertainties inherent in estimating default
probability.

Portfolio Models

While default barrier models have proved very use-
ful for assessing single-name default probability and
supporting trading strategies such as capital structure
arbitrage, arguably an even more significant develop-
ment has been their application in credit portfolio
models. The basic strength of the default barrier
approach is to provide the transformation necessary to

model default events via a multivariate normal dis-
tribution driven by asset correlations. The intuition
of the approach makes it possible to add complexi-
ties such as credit migrations and stochastic recovery
rates into the model.

Default Correlation

Consider modeling the joint default probability of two
entities. Using the standard definition of a correlation
coefficient, we can write the joint default probability
as

pAB = pApB + ρAB

√
pA(1 − pA)pB(1 − pB) (4)

where pA and pB are the individual default proba-
bilities and ρAB is the default correlation. Assuming,
without loss of generality, that pA ≤ pB and since
the joint default probability can be no greater than
the smaller of the individual default probabilities, we
have

ρAB = pAB − pApB√
pA(1 − pA)pB(1 − pB)

≤ pA − pApB√
pA(1 − pA)pB(1 − pB)

=
√

pA(1 − pB)

pB(1 − pA)
(5)

This shows that the default correlation cannot be
+1 (or indeed via a similar argument −1) unless
the individual default probabilities are equal. There is
therefore a maximum (and minimum) possible default
correlation that changes with the underlying default
probabilities. This suggests a need for more economic
structure to model joint default probability.

Default Barrier Approach

Suppose that we write default as being driven by a
standard Gaussian variable Xi being below a certain
level k = �−1(p). We can interpret X as being an
asset return in the classic Merton sense, with k being
a default barrier. Now joint default probability is
readily defined via a bivariate Gaussian distribution:

pAB = �2
(
�−1(pA), �−1(pB); λAB

)
(6)

where �2 is a cumulative bivariate cumulative dis-
tribution function and λAB is the “asset correlation”.
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B

Figure 2 Illustration of the mapping of default and credit migrations thresholds as used in the CreditMetrics approach. The
default region is also shown with additional thresholds corresponding to different recovery values with R1 < R2 < R3 < R4

Multiple names can be handled via a multivariate
Gaussian distributionb with Monte Carlo simulation
or various factor-type approaches used for the calcu-
lation of multiple defaults and/or losses.

Although there is a clear link between this simple
approach and the multidimensional Merton model,
we have ignored the full path of the asset value
process and linked default to just a single variable
Xi . A more rigorous time-dependent approach can
be found in [7], which is much more complex and
time consuming to implement. In practice, the one-
period approach is rather similar to the full approach
for relative small default probabilities.

CreditMetrics

CreditMetrics [6], first published in 1997, is a credit
portfolio model based on the multivariate normal
default barrier approach. This framework assumes
a default barrier as described above and also con-
siders the mapping of credit migration probabilities
onto the same normal variable. A downgrade can
therefore be seen as a less extreme move not causing
default. In addition to credit migrations, one can also
superimpose different recovery rates onto the same
mapping so that there is more than one default barrier
with lower barriers representing more severe default

and therefore a lower recovery value; for example,
see [1]. An illustration of the mapping is shown in
Figure 2.

Regulatory Approaches

Basel 2. A key strength of the above framework
is that defaults, credit migrations, and recovery rates
can be modeled within a single intuitive framework
with correlation parameters estimated from equity
data. While other credit portfolio modeling frame-
works have been proposed, the CreditMetrics style
approach has been the most popular. Indeed, the
Basel 2 formula [4] can be seen as arising from a
simplified version of this approach with the following
assumptions:

• no credit migration or stochastic recovery and
• infinitely large homogeneous portfolio.

Rating Agency Approaches to Structured Finance.
With the massive growth of the collateralized debt
obligation (CDO) came a need for rating agencies
(see Structured Finance Rating Methodologies) to
model the risk inherent in a CDO structure with
a view to assigning a rating to some or all of
the tranches of the CDO capital structure. Rating a
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tranche of a CDO is essentially the same problem
as estimating capital on a credit portfolio and hence
it may come as no surprise that the rating agencies
models were based on default barrier approaches. The
rating agencies models can be thought of as therefore
heavily following the CreditMetrics approach. The
credit crisis of 2007 brought very swift criticism
of rating agency modeling approaches to rating
all types of structure finance and CDO structures.
This was related largely to poor assessment of
the model parameters (specifically rather optimistic
default probabilities and correlation assumptions)
rather than a failure of the model itself.

CDO Pricing

A final and perhaps most exciting (although not
for necessarily positive reasons) application of the
default barrier approach is in the pricing of synthetic
CDO structures. The market standard approach for
pricing CDOs follows the work of Li [11] (see Gaus-
sian Copula Model) who models time of default in
a multivariate normal framework:

Pr(TA < 1, TB < 1)

= �2
(
�−1(FA(TA)), �−1(FB(TB)); γ

)
(7)

where FA and FB are the distribution functions for
the survival times TB and TB and γ is a correlation
parameter. At first glance, although this uses the same
multivariate distribution, or copulac, this approach
initially does not seem to be a default barrier model.
However, as noted in [11], for a single period, the
approaches are identical. Furthermore, as shown by
Laurent and Gregory [5], the pricing of a synthetic
CDO requires just the knowledge of loss distributions
at each date up to the contractual maturity date (and
not any further dynamical information). Hence, we
can think of the Li approach as being again similard

to the traditional framework of credit portfolio model-
ing, following CreditMetrics and ultimately inspired
by the Merton approach to modeling default via the
hitting time of a barrier. The recent strong criticism
linking the model in [11] to the credit crisis [13] does
not fairly consider the rather naı̈ve calibration use of
the model that has caused many of the problems in
structured finance.

Conclusions

We have described the range of default barrier models
used in default probability estimation, capital struc-
ture trading, credit portfolio management, regulatory
capital calculations, and pricing and rating CDO
products. The intuition that default can be modeled
as a hitting of a barrier has been crucial to the rapid
development of credit risk models. For credit port-
folio risk in particular, the default barrier approach
has been key to the development of models for many
different purposes, driven from the same underlying
structural framework. Given that some applications
of the approach (most notably rating agency models
and CDO pricing) have received large criticism, it
is worth pointing out that one can only discredit the
entire framework (including any multidimensional
Merton approach) or realize that it is a misuse of
the model rather than the model itself that lies at the
heart of the problems.

End Notes

a.In the proprietary Moody’s KMV implementation, the
default point is not the face value of debt but the current
book value of their liabilities. This is often computed as
short-term liabilities plus half long-term liabilities.
b.It should be noted that alternatives to a Gaussian distribu-
tion (e.g., student-t) can and have been considered although
the Gaussian approach has remained most common.
c.This approach has become known as the Gaussian copula
model which is perhaps confusing since the key point of
the approach is the representation of the joint distribution
of default times and not the choice of a Gaussian copula or
multivariate distribution.
d.Li was at the time working at JP Morgan and so this is
not surprising.

References

[1] Arvanitis, A., Browne, C. Gregory, J. & Martin, R.
(1998). A credit risk toolbox, Risk December, 50–55.

[2] Black, F. & Cox, J. (1976). Valuing corporate securities:
some effects of bond indenture provisions, Journal of
Finance 31, 351–367.

[3] Finger, C., Finkelstein, V., Pan, G., Lardy, J.P. &
Tiemey, J. (2002). Credit-Grades Technical Document,
RiskMetrics Group.

[4] Gordy, M. (2003). A risk-factor model foundation for
ratings-based bank capital rules, Journal of Financial
Intermediation 12, 199–232.



Default Barrier Models 5

[5] Gregory, J. & Laurent, J.-P. (2005). Basket default
swaps, CDO’s and factor copulas, Journal of Risk 7(4),
103–122.

[6] Gupton, G.M., Finger, C.C. & Bhatia, M. (1997).
CreditMetrics Technical Document, Morgan Guaranty
Trust Company, New York.

[7] Hull, J., Predescu, M. & White, A. (2005). The Valuation

of Correlation-Dependent Credit Derivatives Using a

Structural Model , working paper, available at SSRN:
http://ssrn.com/abstract=686481

[8] Kealhofer, S. (2003). Quantifying default risk I: default
prediction, Financial Analysts Journal 59(1), 33–44.

[9] Kealhofer, S. & Kurbat, M. (2002). The Default Pre-

diction Power of the Merton Approach, Relative to Debt

Ratings and Accounting Variables , KMV LLC, Mimeo.

[10] Leland, H. (1994). Corporate debt value, bond
covenants, and optimal capital structure, Journal of
Finance 49, 1213–1252.

[11] Li, D.X. (2000). On default correlation: a Copula
approach, Journal of Fixed Income 9, 43–54.

[12] Merton, R.C. (1974). On the pricing of corporate debt:
the risk structure of interest rates, Journal of Finance
29, 449–470.

[13] Wired Magazine: 17.03 (2009). Recipe for Disaster: The
Formula That Killed Wall Street .

Related Articles

Credit Risk; Structural Default Risk Models.

JON GREGORY



Multiname Reduced Form
Models

Currently, there are three established approaches
for describing the default of a single credit: (i)
reduced-form; (ii) structural; and (iii) hybrid. It
has been an outstanding goal for many researchers
to extend these approaches to baskets of several
(potentially many) credits. In this article, we con-
centrate on the reduced-form approach and show
how it works in single-name and multiname
settings.

Single-name Intensity Models

For a single name, the main assumptions of the
reduced-form model are as follows [8, 9, 12]).
The name defaults at the first time a Cox pro-
cess jumps from 0 to 1. The default intensity
(hazard rate) X (t) of this process is governed
by a mean-reverting nonnegative jump-diffusion
process

dX (t) = f (t, X (t)) dt + g (t, X (t)) dW (t)

+ J dN (t) , X (0) = X0 (1)

where W (t) is a standard Wiener process, N (t)

is a Poisson process with intensity λ (t), and J is
a positive jump distribution; W, N, J are mutually
independent. It is clear that we have to impose the
following constraints:

f (t, 0) ≥ 0, f (t, ∞) < 0, g (t, 0) = 0 (2)

plus a number of other technical conditions to
ensure that X (t) stays nonnegative and is mean
reverting.

For analytical convenience (rather than for
stronger reasons), it is customary to assume that X

is governed by the square-root stochastic differential
equation (SDE):

dX (t) = κ (θ (t) − X (t)) dt + σ
√

X (t) dW (t)

+ J dN (t) , X (0) = X0 (3)

with exponential (or hyperexponential) jump dis-
tribution [4]. However, for practical purposes it
is more convenient to consider discrete jump dis-
tributions with jump values Jm > 0, 1 ≤ m ≤ M ,
occurring with probabilities πm > 0; such distribu-
tions are more flexible than parametric ones because
they allow one to place jumps where they are
needed.

In this framework, the survival probability of the
name from time 0 to time T has the form

q (0, T ) = Ɛ0

{
e−

∫ T

0
X(t ′) dt ′

}
= Ɛ0

{
e−Y (T )

}
(4)

where Y (t) is governed by the following degenerate
SDE:

dY (t) = X (t) dt, Y (0) = 0 (5)

More generally, the survival probability from time
t to time T conditional on no default before time t

has the form

q ( t, T |X (t) , Y (t))

= �(τ>t)Ɛt

{
e−

∫ T

t
X(t ′) dt ′

∣∣∣∣ X (t) , Y (t)

}

= eY (t)�(τ>t)Ɛt

{
e−Y (T )

∣∣ X (t) , Y (t)
}

(6)

where τ is the default time and �(τ>t) is the
corresponding indicator function. This expectation,
and, more generally, expectations of the form
Ɛt

{
e−ξY (T )

∣∣ X (t) , Y (t)
}
, can be computed by

solving the following augmented partial differential
equation (PDE) (see [10], Chapter 13):

LV (t, T , X, Y ) + XVY (t, T , X, Y ) = 0 (7)

V (T , T , X, Y ) = e−ξY (8)

where

LV ≡ Vt + κ (θ (t) − X) VX + 1

2
σ 2XVXX

+ λ
∑
m

πm [V (X + Jm) − V (X)] (9)
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Specifically, the following relation holds:

Ɛt

{
e−ξY (T )

∣∣X (t) , Y (t)
} = V (t, T , X (t) , Y (t))

(10)

The corresponding solution can be written in the
so-called affine form:

V (t, T , X, Y ) = ea(t,T ,ξ)+b(t,T ,ξ)X−ξY (11)

where a, b are functions of time governed by the
following system of ordinary differential equations
(ODEs):




da (t, T , ξ)
dt

= −κθ (t) b (t, T , ξ)

−λ
∑
m

πm

[
eJmb(t,T ,ξ) − 1

]
db (t, T , ξ)

dt
= ξ + κb (t, T , ξ)

−1
2σ 2b2 (t, T , ξ)

(12)

a (T , T , ξ) = 0, b (T , T , ξ) = 0 (13)

While in the presence of discrete jumps this
system cannot be solved analytically, it is very easy
to solve it numerically via the standard Runge–Kutta
method. The survival probability q (0, T ) and default
probability p (0, T ) have the form

q (0, T ) = ea(0,T ,1)+b(0,T ,1)X0

p (0, T ) = 1 − q (0, T ) = 1 − ea(0,T ,1)+b(0,T ,1)X0

(14)

Assuming for simplicity that the short interest rate
r (t) is deterministic and the protection payments are
made continuously, we can write the value U of a
credit default swap (CDS) paying an up-front amount
υ and a coupon s in exchange for receiving 1 − R

(where R is the default recovery) on default as fol-
lows:

U = −υ + V (0, X0) (15)

Here, V (t, X) solves the following pricing
problem:

LV (t, X) − (r + X)V (t, X) = s − (1 − R) X

(16)

V (T , X) = 0 (17)

where L is given by expression (9). Using Duhamel’s
principle, we obtain the following expression
for V :

V (t, X) = − s

∫ T

t

D
(
t, t ′

)
ea(t,t ′,1)+b(t,t ′,1)X dt ′

− (1−R)

∫ T

t

D
(
t, t ′

)
d
[
ea(t,t ′,1)+b(t,t ′,1)X

]

(18)

where

D
(
t, t ′

) = e−
∫ t ′

t
r
(
t
′′)

dt ′′
(19)

is the discount factor between two times t and t ′.
Accordingly,

U = −υ − s

∫ T

0
D

(
0, t ′

) (
1 − p

(
0, t ′

))
dt ′

+ (1 − R)

∫ T

0
D

(
0, t ′

)
dp

(
0, t ′

)
(20)

For a given up-front payment υ, we can represent
the corresponding par spread ŝ (i.e., the spread that
makes the value of the corresponding CDS zero) as
follows:

ŝ (T ) =
−υ + (1 − R)

∫ T

0
D

(
0, t ′

)
dp

(
0, t ′

)
∫ T

0
D

(
0, t ′

) (
1 − p

(
0, t ′

))
dt ′

(21)

It is clear that the numerator represents the pay-
out in the case of default, while the denominator
represents the risky DV01. Conversely, for a given
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spread we can represent the par up-front payment in
the form

υ̂ = −s (T )

∫ T

0
D

(
0, t ′

) (
1 − p

(
0, t ′

))
dt ′

+ (1 − R)

∫ T

0
D

(
0, t ′

)
dp

(
0, t ′

)
(22)

In these formulas, we implicitly assume that the
corresponding CDS is fully collateralized, so that
in the event of default 1 − R is readily available.
Shortly, we will evaluate CDS spreads in the presence
of the counterparty risk.

In general, there is not enough market informa-
tion to calibrate the diffusion and jump parts. So,
typically, they are viewed as given constants, and the
mean-reversion level θ (t) is calibrated in such a way
that the whole par spread curve is matched.

Multiname Intensity Models

The Two-name Case

It is very tempting to extend the above framework
to cover several correlated names. For example,
consider two credits, A, B and assume for simplicity
that their default intensities coincide,

XA (t) = XB (t) = X (t) (23)

and both names have the same recovery RA =
RB = R. For a given maturity T , the default event
correlation ρ is defined as follows:

ρ (0, T ) = P (τA ≤ T , τB ≤ T ) − P (τA ≤ T ) P (τB ≤ T )√
P (τA ≤ T ) (1 − P (τA ≤ T )) P (τB ≤ T ) (1 − P (τB ≤ T ))

(24)

ρ (0, T ) = pAB (0, T ) − pA (0, T ) pB (0, T )√
pA (0, T ) (1 − pA (0, T )) pB (0, T ) (1 − pB (0, T ))

(25)

where τA, τB are the default times, and

pA (0, T ) = P (τA ≤T ) , pB (0, T ) = P (τB ≤T )

pAB (0, T ) = P (τA ≤T , τB ≤T ) (26)

It is clear that

pA (0, T ) = pB (0, T ) = p (0, T )

= 1 − ea(0.T ,1)+b(0,T ,1)X0 (27)

Simple calculation yields

pAB (0, T ) = Ɛ0

{
e−

∫ T

0
(XA(t ′)+XB(t ′)) dt ′

}

+ pA (0, T ) + pB (0, T ) − 1

= Ɛ0

{
e−2

∫ T

0
X(t ′) dt ′

}
+ 2p (0, T ) − 1

(28)

so that

ρ (0, T ) =
Ɛ0

{
e−2

∫ T

0
X(t ′) dt ′

}
− (1 − p (0, T ))2

p (0, T ) (1 − p (0, T ))

= ea(0,T ,2)+b(0,T ,2)X0 − e2a(0,T ,1)+2b(0,T ,1)X0(
1 − ea(0,T ,1)+b(0,T ,1)X0

)
ea(0,T ,1)+b(0,T ,1)X0

(29)

It turns out that in the absence of jumps, the
corresponding event correlation is very low [12].
However, if large positive jumps are added (while
overall survival probability is preserved), then corre-
lation can increase all the way to one. Assuming that

T = 5y, κ = 0.5, σ = 7%, and J = 5.0, we illustrate
this observation in Figure 1.

In the two-name portfolio, we can define two
types of CDSs which depend on the correlation:
(i) the first-to-default (FTD) swap; (ii) the
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Figure 1 Correlation ρ and mean-reversion level θ = X0 as functions of jump intensity λ. Other parameters are as follows:
T = 5y, κ = 0.5, σ = 7%, and J = 5.0

second-to-default (STD) swap. The corresponding par
spreads (assuming that there are no up-front pay-
ments) are

ŝ1 (T ) =
(1 − R)

∫ T

0
D

(
0, t ′

)
d

[
1 − ea(0,t ′,2)+b(0,t ′,2)X0

]
∫ T

0
D

(
0, t ′

)
ea(0,t ′,2)+b(0,t ′,2)X0 dt ′

(30)

ŝ2 (T ) =
(1 − R)

∫ T

0
D

(
0, t ′

)
d

[
1 −

(
2ea(t ′,1)+b(t ′,1)X0 − ea(t ′,2)+b(t ′,2)X0

)]
∫ T

0
D

(
0, t ′

) (
2ea(t ′,1)+b(t ′,1)X0 − ea(t ′,2)+b(t ′,2)X0

)
dt ′

(31)

It is clear that the relative values of ŝ1, ŝ2 very
strongly depend on whether or not jumps are present
in the model (see Figure 2).

However, an even more important application of
the above model is the evaluation of counterparty
effects on fair CDS spreads. Let us assume that name
A has written a CDS on reference name B. It is
clear that the pricing problem for the value of the
uncollateralized CDS Ṽ can be written as follows:

LṼ (t, X) − (r + 2X) Ṽ (t, X)

= s − (1 − R) X − (RV+ (t, X) + V− (t, X)) X

(32)

where V is the value of a fully collateralized CDS
on name B with spread s, and V+ = max {V, 0},
V− = min {V, 0}. It is clear that the discount rate

is increased from r + X, in equation (16), to r +
2X, in equation (32), since there are two cases
when the uncollateralized CDS can be terminated
due to default: when the reference name B defaults
and when the issuer A defaults. The terms on
the right represent a continuous stream of coupon
payments, the amount received if B defaults before
A, and the amount received (or paid) in case when
A defaults before B. Although equation (32) is
no longer analytically solvable, it can be solved
numerically via, say, an appropriate modification of
the classical Crank–Nicholson method. It turns out
that in the presence of jumps the value of the fair par
spread goes down dramatically.
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Figure 2 FTD spread ŝ1, STD spread ŝ2, and single-name CDS spread ŝ as functions of jump intensity λ. Other parameters
are the same as in Figure 1. It is clear that jumps are necessary to have ŝ1 and ŝ2 of similar magnitudes

The Multiname Case

The above modeling framework has been expanded
in various directions and used as a basis for several
coherent intensity-based models for credit baskets;
see [2, 3, 6, 7, 11].

To start, we briefly summarize the affine jump-
diffusion model of Duffie–Garleanu [3] and Mor-
tensen [11]. Consider a basket of N names with
equal unit notionals and equal recoveries R. Let us
assume that the corresponding default intensities can
be decomposed as follows:

Xi (t) = βiXc (t) + X̃i (t) (33)

where Xc is the common intensity driven by the
following SDE:

dXc (t) = κc (θc − Xc (t)) dt + σc

√
Xc (t) dWc (t)

+ Jc dNc (t)

Xc (0) = Xc0 (34)

while X̃i are idiosyncratic intensities driven by sim-
ilar SDEs:

dX̃i (t) = κi

(
θi − X̃i (t)

)
dt + σi

√
X̃i (t) dWi (t)

+ J̃i dNi (t)

X̃i (0) = X̃i0 (35)

Here, 1 ≤ i ≤ N . The processes X̃i (t) , Xc (t) are
assumed to be independent. In this formulation, βi are
similar to the βi appearing in the capital asset pric-
ing model (CAPM). We note that θc, θi are assumed
to be constant. In the original Duffie–Garleanu for-
mulation, it was assumed that all βi = 1. However,
this assumption is very restrictive since it limits the
magnitude of the common factor by the size of the
lowest spread Xi , so that, in general, high correlation
cannot be achieved. It was lifted in the subsequent
paper by Mortensen. Of course, to preserve analytic-
ity, one needs to impose very rigid conditions on the
coefficients of the corresponding SDEs, since, in gen-
eral, the sum of two affine processes is not an affine
process. Specifically, the following should hold:

κi = κc = κ, σi = √
βiσc, λi = λ, Jim = βiJcm

(36)

Even when the above constraints are satisfied,
there are too many free parameters in the model. A
reduction in their number is achieved by imposing
the following constraints:

βiθc

βiθc + θi

= λc

λc + λ
= Xc (0)

Xc (0) + Xave (0)
= ω (37)

where ω is a correlation-like parameter representing
the systematic share of intensities, and Xave (0) is the
average of Xi (0). When ω is low, the dynamics of
intensities is predominantly idiosyncratic, and it is
systemic when ω is close to one.
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Provided that equation (36) is true, the affine
ansatz still holds, so that survival probabilities of
individual names can be written in the form

qi ( t, T |Xi (t))

= �(τi>t)Ɛt

{
e−

∫ T

t
Xi(t ′) dt ′

∣∣∣∣ Xi (t)

}

= �(τi>t)Ɛt

{
e−βi [Yc(T )−Yc(t)]

∣∣ Xc (t)
}

× Ɛt

{
e−

[
Ỹi (T )−Ỹi (t)

]∣∣∣∣ X̃i (t)

}

= �(τi>t)e
ac(t,T ,βi)+bc(t,T ,βi)Xc(t)+ai (t,T ,1)+bi (t,T ,1)X̃i (t)

(38)

Moreover, conditioning the dynamics of spreads
on the common factor Yc (T ),we can write idiosyn-
cratic survival probabilities as follows:

qi

(
t, T | X̃i (t) , Yc (T )

)

= �(τi>t)e
−βi [Yc(T )−Yc(t)]+ai (t,T ,1)+bi (t,T ,1)X̃i (t)

(39)

qi

(
0, T | X̃i0, Yc (T )

)

= e−βiYc(T )+ai (0,T ,1)+bi (0,T ,1)X̃i0 (40)

First, we perform the calibration of the model
parameters to fit 1y and 5y CDS spreads for indi-
vidual names. Once this calibration is performed,
we can apply the usual recursion and calculate the
conditional probability of loss of exactly n names,
0 ≤ n ≤ N , in the corresponding portfolio, or, equiv-
alently, of the loss of size (1 − R) n, which we denote
as p (0, T , n|Y ).

For a tranche of the portfolio which covers losses
from the attachment point α to the detachment point
δ, 0 ≤ α < δ ≤ 1, the relative tranche loss is defined
as follows:

�α,δ (L) = max {min {L, δN} − αN, 0}
(δ − α) N

(41)

Its conditional expectation has the form

pα,δ (0, T | Y ) =
N∑

n=0

�α,δ ((1 − R) n) p (0, T , n|Y )

(42)

In order to find the unconditional expectation, we
have to integrate pα,δ (0, T | Y ) with respect to the
distribution f (Y ) of the common factor Y . The latter
distribution can be found via the inverse Laplace
transform of the function

φ (ξ) =
∫ ∞

0
e−ξY f (Y ) dY = eac(0,T ,ξ)+bc(0,T ,ξ)Xc0

(43)

by numerically calculating the Bromwich integral in
the complex plane

f (Y ) = 1

2π i

∫ γ+i∞

γ−i∞
eξY φ (ξ) dξ

= 1

2π i

∫ γ+i∞

γ−i∞
eξY+ac(0,T ,ξ)+bc(0,T ,ξ)Xc0 dξ

(44)

Both standard and more recent methods allow
one to calculate the inverse transform without too
much difficulty; see, for example, [1]. Finally, we
calculate the unconditional expectation of the tranche
loss by performing integration over the common
factor:

pα,δ (0, T ) =
∫ ∞

0
pα,δ (0, T | Y ) f (Y ) dY (45)

Knowing this expectation, we can represent par
spread and par up-front for the tranche in question
by slightly generalizing formulas (21) and (22). In
other words,

sα,δ (T ) =
−υ +

∫ T

0
D

(
0, t ′

)
dpα,δ

(
0, t ′

)
∫ T

0
D

(
0, t ′

) (
1 − pα,δ

(
0, t ′

))
dt ′

(46)

υ = −sα,δ(T )

∫ T

0
D

(
0, t ′

) (
1 − pα,δ

(
0, t ′

))
dt ′

+
∫ T

0
D

(
0, t ′

)
dpα,δ

(
0, t ′

)
(47)

Equity tranches with α = 0, δ < 1 (and, in some
cases, other junior tranches) are traded with a fixed
spread, say s = 5%, and an up-front determined by
formula (47); more senior tranches are traded with
zero up-front and spread determined by formula (46).
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Treatment of super-senior tranches with δ = 1 has
to be slightly modified, but we do not discuss the
corresponding details for the sake of brevity.

The affine jump-diffusion model allows one to
price tranches of standard on-the-run indices, such as
CDX and iTraxx with reasonable (but not spectacular)
accuracy, and can be further used to price bespoke
tranches; however, one can argue that the presence
of the stochastic idiosyncratic components makes it
unnecessarily complex. In any case, the very rigid
relationships between the model parameters suggest
that the choice of these components is fairly limited
and rather artificial.

Two models without stochastic idiosyncratic com-
ponents were independently proposed in the liter-
ature. The first one, due to Chapovsky et al. [2],
assumes purely deterministic idiosyncratic compo-
nents, and represents qi as follows:

qi (0, T |Yc (T )) = e−βi (T )Yc(T )+ξi (T ) (48)

where, Xc, Yc are driven by SDEs (1) and (5),
while ξi (T ) is calibrated to the survival probabil-
ities of individual names. The second one, due to
Inglis–Lipton [6], models conditional survival prob-
abilities directly, and postulates that qi (0, T |Yc) can
be represented in the logit form

qi (0, T |Yc (T )) = Ɛt

{
1

1 + eYc(T )+χi (T )

}
(49)

We now describe the Inglis–Lipton model in
some detail. To calibrate the model to individual
CDS spreads, we need to solve the following pricing
problem:

L̂V (t, X, Y ) + XVY (t, X, Y ) = 0 (50)

V (T , X, Y ) = 1

1 + eY
(51)

where

L̂V ≡ Vt + f (t, X) VX + 1

2
g2 (t, X) VXX

+ λ
∑
m

πm [V (X + Jm) − V (X)] (52)

and determine χi (T ) from the following algebraic
equation (rather than a PDE):

V (0, 0, χi (T )) = qi (0, T ) , 1 ≤ i ≤ N (53)

As before, we can easily calculate the prob-
ability of loss of exactly n names, 0 ≤ n ≤ N ,
p (0, T , n|Y ) , conditional on Y . We can then solve
the pricing equation (50) with the terminal condition

Vα,δ (T , X, Y ) = pα,δ (0, T | Y ) (54)

and find the expected losses for an individual tranche
at time 0:

pα,δ (0, T ) = Vα,δ (0, X0, 0) (55)

Here, pα,δ (0, T |Y ), pα,δ (0, T ) have the same
meaning as in equations (42) and (45). In order
to price senior tranches rare but large jumps are
necessary. Since, as a rule, we need to analyze several
tranches with different attachments, detachments, and
maturities at once, it is more convenient to solve the
forward version of equation (50) and find pα,δ (0, T )

by integration. Thus, we are in a paradoxical situation
when it is more efficient to perform calibration
to individual names backward and calibration to
tranches forward, rather than the other way round.

When derivatives explicitly depending on the
number of defaults, such as leveraged super-senior
(LSS) tranches, are considered, the X, Y dynam-
ics requires augmentation with the dynamics of the
number of defaulted names n. Since we are dealing
with a “pure birth” process, we can use the well-
known results due to Feller [5] and others and obtain
the following expression for the one-step transition
probability:

h (t, X, Y, n)

=
−

n∑
n′=0

[
pt

(
t, T , n′∣∣Y ) + XpY

(
t, T , n′∣∣Y )]

p ( t, T , n|Y )

=

N∑
n′=n+1

[
pt

(
t, T , n′∣∣Y ) + XpY

(
t, T , n′∣∣Y )]

p ( t, T , n|Y )

(56)

The corresponding backward Kolmogoroff equa-
tion has the following form:

L̂V (t, X, Y, n) + XVY (t, X, Y, n) + h (t, x, Y, n)

× [V (t, X, Y, n + 1) − V (t, X, Y, n)] = 0 (57)
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Table 1 Market quotes and full dynamic model calibration results. We quote par up-front payments with 5% spread for
equity tranches, and par spreads for all other tranchesa

5y 5y 7y 7y 10y 10y

α δ Market Model Market Model Market Model
0% 3% 21.75% 21.76% 29.00% 28.89% 36.88% 36.94%
3% 6% 150.5 149.8 210.5 215.6 377.0 379.5
6% 9% 72.5 73.7 108.0 100.7 158.0 159.2
9% 12% 52.5 51.3 72.0 72.3 104.5 98.8
12% 22% 32.5 32.6 46.0 47.6 63.5 64.3
0% 100% 49.0 46.7 56.0 53.6 65.0 63.4

aadapted from [7]
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Figure 3 Loss distributions for 5y, 7y, 10y implied by the calibrated dynamic model (adapted from [7])

If need occurs, a multifactor extension of the
above model can be considered.

Table 1 shows the quality of calibration achievable
in the above framework for the on-the-run iTraxx
index on November 9, 2007. We show the corre-
sponding loss distributions in Figure 3.

This model can naturally be used to price bespoke
baskets (as long as an appropriate standard basket
is determined). It does not suffer from any of the
drawbacks of the standard mapping approaches used
for this purpose.

We note in passing that Inglis–Lipton [6] describe
a static version of their model which is perfectly
adequate for the purposes of pricing standard and
bespoke tranches, even under the current extreme
market conditions.

Conclusion

In general, multiname intensity models have many
attractive features. They are naturally connected to
single-name intensity models. In order to account for
the observed tranche spreads in the market, they have
to postulate periods of very high intensities which

gradually mean-revert to moderate and low levels.
Mean-reversion of the default intensities serves as a
useful mechanism which allows one to price tranches
with different maturities in a coherent fashion. Of
course, due to the presence of large jumps, it is very
difficult to provide convincing hedging mechanisms
in such models. However, since we assume that
jumps are discrete, it is possible in principle to
hedge a given bespoke tranche with a portfolio of
standard tranches. This is a topic of active research
and experimentation at the moment, and we hope to
present the outcome of this research in the near future.
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Default Time Copulas

Copulas are used in mathematical statistics to des-
cribe multivariate distributions in a way that separates
the marginal distributions from the codependence
structure. More precisely, any multivariate distri-
bution can be “decomposed” into its marginal
distributions and a multivariate distribution with
uniform marginals. Suppose X1, . . . , Xn are real-
valued stochastic variables with marginal distribu-
tions

fi(x) = P(Xi ≤ x), i = 1, . . . , n (1)

where the right-hand side denotes the probability
that Xi takes a value less than or equal to x.
Suppose further that C is a distribution function
on the n-dimensional unit hypercube with uniform
marginals.a Then we can define a joint distribution of
(X1, . . . , Xn) by

P(X1 ≤ x1, . . . , Xn ≤ xn) = C(f1(x1), . . . , fn(xn))

(2)

We say that C is the copula function of the joint
distribution. Clearly, the copula function for a given
distribution is unique. Existence, that is, the actual
existence of a copula function for any joint distri-
bution, is established by Sklar’s Theorem [3]. Given
the definition of a copula, it is clear that a default
time copula is a copula for the joint distribution
of default times. Here, as in other applications in
finance, the main advantage of using a copula formu-
lation is that the marginal distributions are implied
from the market, independent of information about
mutual dependencies between default times. Specif-
ically, the distribution of the time of default of a
single firm can be impliedb from the par spread of
the credit default swap (CDS) contracts on the debt
of the firm. This distribution is represented by the
“default curve”:

pi(t) = P(τi ≤ t) (3)

where τi is the stochastic default time of the ith firm.c

Once we have determined the marginal distributions
of the default rates of single firms in this way,
we may model mutual dependencies between these
default times by choosing a suitable copula function

and writing the joint distribution of default times
as in equation (2). From a practical point of view
it is a great advantage that, by construction, the
marginal distributions are unchanged under a change
of copula. This allows us to preserve the calibration to
market CDS quotes while adjusting the codependence
structure.

Factor Copulas

In practice, copula functions are rarely specified
directly for the default times. Instead, we introduce
stochastic “default trigger variables” Xi such that we
can identify events

{Xi ≤ hi(t)} ≡ {τi ≤ t} (4)

for suitable nondecreasing functions hi : �+ → �
such that

P(Xi ≤ hi(t)) = pi(t) (5)

We may regard the trigger variables as just a conve-
nient mathematical device, but we may also follow
Merton [2] and view Xi as the (return of the) value of
the assets of the ith firm. With this interpretation, we
may further interpret hi(T ) for some fixed time hori-
zon T as the face value of the firm’s debt maturing at
T . In this picture, default coincides with insolvency.

One advantage of using default trigger variables
rather than default times is that the codependency
of firm values is more susceptible to economic
reasoning. For example, we can think of asset values
as being driven by a common factor representing
general economic conditions. Then we would use a
decomposition such as

Xi = fi(Z) + εi (6)

where Z is the common factor, εi are idiosyncratic
components independent of each other and of Z,
and fi are suitable “loading functions”. Note that,
conditional on a given factor value, the trigger
variables and, therefore, the default times, will be
independent. The (unconditional) joint distribution is
determined, for given distributions of Z and the εis,
by the loading functions fi .

A default time copula specified by default triggers
with the decomposition in equation (6) is called a
factor copula. Most, if not all, copula models used in
derivatives pricing are factor copulas.
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Pricing with Copula Models

The generic application of default time copulas is
in the pricing of CDO tranches, that is, tranches of
a portfolio of debt instruments referencing a (large)
number of issuers. Such a tranche is a special case
of a security whose future cash flows is a function of
the default times of the issuers. The present value of
such a security is given by an expectation over the
joint default time distribution, which, in the general
case, has to be evaluated by Monte Carlo, that is, by
random sampling from the distribution. However, as
we shall now discuss, for certain types of securities,
the expectation can be calculated by a much faster
method if a factor copula is used.

Loss Distributions

Although it is true that a CDO tranche depends on the
joint default time distribution, it does so in a rather
special way since, in fact, it only depends on the
total loss in the portfolio; in particular, it does not
depend on the identity of the defaulted names, or on
the order in which they default. More precisely, we
can compute the value of a tranche if we know the
distribution of the cumulated portfolio loss out to any
time up to tranche maturity.d As we shall now see, the
computation of such loss distributions is particularly
simple in a factor model.

We shall first show how to compute the dis-
tribution of portfolio loss to some fixed horizon
t conditional on some given factor value z. To lighten
the notation, we suppress the parameters z and t . Let
pi be the conditional probability that the ith issuer
defaults and assume that the loss in default is given
by some constante u. Further define

P
(n)
l = P(L(n) = lu) (7)

where L(n) is the default loss from the first n issuers
(in some arbitrary order).

Then we have the following recursion relation
(see [1])

P
(n+1)
l = (1 − pn+1)P

(n)
l + pn+1P

(n)

l−1 (8)

which allows us to build the loss distribution for any
portfolio from the trivial case of the empty portfolio

P
(0)
l = δl,0 (9)

From the conditional loss distributions, we obtain the
unconditional loss distribution by integrationf over z.

We remark that using equation (8) amounts to
explicitly doing the convolution of the independent
conditional loss distribution for each issuer in order
to obtain the distribution of the portfolio loss. This
convolution could also be done by Fourier techniques
although this involves a somewhat greater compu-
tational burden. Note that by suitably inverting the
convolution, one may compute the sensitivities of the
tranche value to the parameters, for example, default
probability, of each issuer. These are very important
quantities in financial risk management.

Concluding Remarks

Models based on default time copulas are in wide-
spread use for pricing and risk managing portfolio
credit derivatives such as CDO tranches. The impor-
tant special case of factor copulas combines the dual
advantages of providing a clear economical interpre-
tation of default time codependence and of allowing
computationally efficient implementations.

The main practical limitation of copula models is
that they are not dynamic models in the sense that
they do not allow any conditioning on the future
state of the world. This means that copula models
cannot be reliably used, for example, in the pricing
of options on tranches since here we have to be
able to determine the distribution of the value of the
underlying tranche conditioned on the state at option
expiration time. To address such problems, we need
a model that specifies the stochastic dynamics of a
sufficient set of state variables. For example, we could
specify the joint dynamics of all default intensities.
Any such model would, of course, produce a joint
default time distribution which would be describable
by a copula and marginals. But this is not a one-to-
one relationship since different dynamic models can
produce the same copula. In this sense, the copula
approach is more efficient for securities that depend
only on the joint distribution of default times.

End Notes

a.This simply means that C : [0, 1]n → [0, 1] is nondecreas-
ing in each argument, C(0, . . . , 0) = 0, C(1, . . . , 1) = 1,
and that, for any i and any yi ∈ [0, 1],
∫ 1

0
dy1 . . .

∫ 1

0
dyi−1

∫ 1

0
dyi+1 . . .

∫ 1

0
dyn C(y1, . . . , yn)= yi .
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b.Given suitable assumptions about recovery in default.
c.Note that this distribution is the so-called risk-neutral
distribution,which differs from the real-world, or physical,
distribution unless there is no risk premium associated with
the risk of default.
d.In practice, this is approximated by a finite set of times.
e.This assumption is just for notational convenience; the
extension to issuer specific, and possibly random, loss
amounts is straightforward.
f.If z has real dimension ≤ 3, a quadrature scheme can be
used, otherwise Monte Carlo integration is more efficient.
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Gaussian Copula Model

Li [5] has introduced a copula function approach
to credit portfolio modeling. In this approach, the
author first introduces a random variable to denote
the survival time for each credit and characterizes its
properties using a density function or a hazard rate
(see Hazard Rate). This allows us to move away
from a one-period framework so that we could incor-
porate the term structure of default probabilities for
each name in the portfolio. Then, the author intro-
duces copula functions (see Copulas: Estimation)
to combine information from all individual credits
and further assumes a correlation structure among all
credits. Mathematically, copula functions allow us to
construct a joint distribution of survival times with
given marginal distributions as specified by individ-
ual credit curves. This two-stage approach to forming
a joint distribution of survival times has advantages.
First, it incorporates all information on each individ-
ual credit. Second, we have more choices of different
copula functions to form a good joint distribution to
serve our purpose than if we assume a joint distribu-
tion of survival times from the start. While the normal
copula function was used in [5] for illustration due
to the simplicity of its economic interpretation of the
correlation parameters and the relative ease of com-
putation of its distribution function, the framework
does allow use of other copula functions. We also dis-
cuss an efficient “one-step” simulation algorithm of
survival times in the copula framework by exploring
the mathematical property of copula functions in con-
trast to the period by period simulation as suggested
earlier by others.

Default Information of a Single Name

To price any basket credit derivative structure, we
first need to build a credit curve for each single credit
in the portfolio, and then we need to have a default
correlation model so that we can link all individual
credits in the portfolio.

A credit curve for a company is a series of default
probabilities to future dates. Traditionally, we use rat-
ing agency’s historical default experience to derive
this information. From a relative value trading per-
spective, however, we rely more on market informa-
tion from traded assets such as risky bond prices,

asset swap spreads, or, nowadays, directly the single-
name term structure of default swap spreads to derive
market implied default probabilities. These probabil-
ities are usually called risk neutral default probabil-
ities, which, in general, are much higher than the
historical default probabilities for the rating class to
which this company belongs. Mathematically, we use
the distribution function of survival time to describe
these probabilities. If we denote τ as an individual
credit’s survival time which measures the length of
time from today to the time of default, we use F(t)

as the distribution function defined as follows:

F(t) = Pr[τ ≤ t] = 1 − S(t) (1)

where S(t) is called the survival probability up to
time t . The marginal probabilities of defaults such
as the ones over one-year periods, or hazard rates in
continuous term, are usually called a credit curve. In
general, for single-name default swap pricing, only a
credit curve is needed in the same way as an interest
rate curve is needed to price an interest rate swap.

Correlating Defaults through Copula
Functions

Central to the valuation of the credit derivatives based
on a credit portfolio is the default correlation. To
put it in simple terms, default correlation measures
the impact of one credit default on other credits.
Intuitively, one would think of default correlation
as being driven by some common macroeconomic
factors. These factors tend to tie all industries into
the common economic cycle, a sector-specific effect
or a company-specific effect. From this angle, it is
generally believed that default correlation is posi-
tive even between companies in different sectors.
Within the same sector, we would expect compa-
nies to have an even higher default correlation since
they have more commonalities. For example, over-
capacity in the telecommunication industry after the
internet/telecom bubble resulted in the default of
numerous telecommunication and telephone compa-
nies. However, the sheer lack of default data means
those assumptions are difficult to verify with any
degree of certainty. Then we have to resort to an
economic model to solve this problem.

From a mathematical point of view, we know the
marginal distribution of survival time of each credit
in the portfolio and we need to find a joint survival
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time distribution function such that the marginal
distributions are the same as the credit curves of
individual credits. This problem cannot be solved
uniquely. There exist a number of ways to construct
a joint distribution with known marginals. Copula
functions, used in multivariate statistics, provide a
convenient way to specify any joint distribution with
given marginal distributions.

A copula function (see Copulas: Estimation) is
simply a specification of how to use the univariate
marginal distributions to form a multivariate distribu-
tion. For example, if we have N -correlated uniform
random variables U1, U2, . . . , UN , then

C(u1, u2, . . . , uN)

= Pr{U1 < u1, U2 < u2, . . . , UN < uN } (2)

is the joint distribution function, which gives the
probability that all of the uniforms are in the
specified N -dimensional space cube. Using this
joint distribution function C and N marginal
distribution functions Fi(ti ), which describe N

credit curves, we form another function as follows:
C[F1(t1), F2(t2), . . . , FN(tN )]. It can be shown that
this function is a distribution function for the
N -dimensional random vector of survival times
where, as desired, the marginal distributions are
F1(t1), F2(t2), . . . , FN(tN ); see [5]. So a copula
function is nothing more than a joint distribution of
uniform random variables from which we can build
a joint distribution with a set of given marginals.

Then we need to solve two problems. First,
which copula function should we use? Second,
how do we calibrate the parameters in a copula
function? Suppose we study a credit portfolio of two
credits over a given period. The marginal default
probabilities are given by the two credit curves
constructed using market information or historical
information. From an economic perspective, a
company defaults when its asset falls below its
liability. However, in the relative value trading
environment, we know the default probability from
the credit curve constructed using market information
such as default swap spreads, asset swap spreads,
or risky bond prices. Assume that there exists a
standardized “asset return” X and a critical value x,
and when X ≤ x the company would default, that is,

Pr[X1 ≤ x1] = �(x1) = q1

Pr[X2 ≤ x2] = �(x2) = q2 (3)

where � is the cumulative univariate standard
normal distribution. We use �n to denote the
n-dimension cumulative normal distribution function.
If we assume that the asset returns follow a bivari-
ate normal distribution �2(x, y, ρ) with correlation
coefficient ρ, the joint default probability is given by

Pr[X1 ≤ x1, X2 ≤ r2]

= Pr[X1 ≤ �−1(q1), X2 ≤ �−1(q2)]

= �2[�−1(q1), �−1(q2), ρ] (4)

This expression suggests that we can use a Gaus-
sian copula function with asset return correlations as
parameters.

The above argument need not be associated with a
normal copula. Any other copula function would be
still able to give us a joint survival time distribution
while preserving the individual credit curves. We
have to use extra conditions in order to choose an
appropriate copula function. When we compare two
copula functions, we need to control the marginal
distribution-free correlation parameter such as the
rank correlation.

This approach gives a very flexible framework
based on which we can value many basket structures.
It can be expressed in the following graph:

Survival
time

Copula
function

Asset
correlation

We also present an efficient simulation algorithm
here to implement our framework. To simulate corre-
lated survival times, we introduce another sequence
of random variables X1, X2, . . . ., Xn such that

Xi = �−1(F (τi)) (5)

where �−1(·) is a one-dimensional standard normal
inverse function. X1, X2, . . . ., Xn follow a joint nor-
mal distribution with a given correlation matrix �.
From this equation, we see that there is a one-to-one
mapping between Xi and τi . Any problem associ-
ated with τi could be transformed into a problem
associated with Xi , which follows a joint normal dis-
tribution. Then we could make use of an efficient
calculation method of multivariate normal distribu-
tion function.

The correlation parameters, in the framework of
our credit portfolio model, can be roughly interpreted
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as the asset return correlation. However, in most prac-
tical uses of the current model, we either set the
correlation matrix using one constant number or two
numbers as the inter- and intraindustrial correlation
for trading models. We could either use an economic
model to asset correlation or we can calibrate the
parameters using traded instruments involving cor-
relation such as first-to-default or collateralized debt
obligation (CDO) tranches.

The commonly used one or two correlation param-
eters are strongly associated with factor models for
asset returns. For example, the one correlation param-
eter ρ ≥ 0 corresponds to a one-factor asset return
model where each asset return can be expressed as
follows:

Xi = √
ρ · Xm + √

1 − ρ · Xi (6)

where Xm represents the common factor return and
εi is the idiosyncratic risk associated with credit asset
i. Vasicek [7] and Finger [3] use this one-factor
copula for portfolio loss calculation. For a detailed
discussion on this one-factor copula model, the reader
is referred to these two references.

If we use two parameters, the interindustrial cor-
relation ρo and the intraindustry correlation ρI , then
for each credit of industry group k = 1, 2, . . . , K , we
can express the asset return as follows [6]:

Xi = √
ρI − ρo·Xk + √

ρo · Xm + Xi (7)

Using these factor models, we can substantially
reduce the dimensionality of the model. The num-
ber of independent factors then does not depend on
the size of the portfolio. For example, for a port-
folio whose credits belong to 10 industries, we just
need to use 11 independent factors, one factor for
each industry and one common factor for all cred-
its. We could substantially improve the efficiency of
our simulation or analytical approach once we exploit
the property of the factor models embedded in the
correlation structure. Some other orthogonal trans-
formations such as the ones obtained by applying
principal component analysis could also be used to
reduce the dimension.

Loss Distribution

For a given credit portfolio, the first information
investors would like to know is its loss distribu-
tion over a given time horizon in the future such as

1 year or 5 years. This would give the investor some
idea about the possible default loss of his investment
in the next few years. The information we need to
use in our framework is as follows: the credit curve
of each credit that characterizes the default property
over the time horizon, the recovery assumption, and
the asset correlation structures. Many useful risk mea-
surements, such as the expected loss, the unexpected
loss, or the standard deviation of loss, the maximum
loss, Value-at-Risk (VaR) or the conditional shortfall,
could be obtained easily once the total loss distribu-
tion is calculated.

Here we study the property of the loss distribution
using a numerical example. The base case used is as
given in Table 1.

Figure 1 shows the excess loss distribution where
the x-axis is the loss amount and y-axis is the
probability of loss more than a given amount in
the x-axis. All excess loss functions would start
from 1 and gradually go to zero. If we include
the zero loss in the probability calculation, then the
probability of having nonnegative losses is always 1.
We purposely exclude the zero loss in the calculation
so that we can see the probability of having zero
loss in the graph explicitly. Let us define the excess
loss more precisely. Suppose that L represents the
total loss of the portfolio, which is a random variable,
since we do not know for sure what value it takes.
For a given set of loss amounts l0, l1, . . . , ln, we can
calculate the probability of excess loss p0, p1, . . . , pn

as follows:

pi = S(li) = Pr[L > li] (8)

The excess loss distribution essentially depicts
(li , pi). The reason we use excess loss distribution
instead of loss distribution, which is defined as
F(li) = 1 − S(li), is mainly due to the fact that many
interesting properties of the loss distribution can be
viewed more explicitly from the excess loss distri-
bution graph than from the ordinary loss distribution

Table 1 Assumptions on a Credit
Portfolio

Number of Assets 100

Credit spread 200 bps
Correlation 50%
Maturity 5 years
Recovery 30%
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Figure 1 Excess Loss Distribution

graph. For example, the expected loss using the den-
sity function f (l) of the loss distribution can be
calculated as follows:

µL = E(L) =
∫ ∞

0
l · f (l)dl =

∫ ∞

0
S(l)dl (9)

which is just the area below the excess loss
distribution line. Some other quantity such as the
expected loss of tranched securities (loss with a
deductible and a ceiling) could also be more simply
expressed if we use excess loss function. We discuss
this point in the next section when we discuss about
CDO pricing.

Figure 1 shows the impact of correlation on the
total excess loss distribution. From the graph we see
that the probability of having zero loss increases from
almost 0 to about 20% when correlation changes
from 0 to 50%. The default probability over 5 years
for each name is 1 − e−5·0.2/(1−30%) = 13.31%, and
the probability of having no default of a portfo-
lio with 100 independent names is (1 − 13.31%)100,
practically 0. However, when the correlation is high,
default occurs more in bulk, which makes the prob-
ability of having zero loss go up to 20%. When
correlation is high, more loss would be pushed to

the right, which makes the excess loss distribution
tail much fatter since the expected total loss, the area
below the excess loss function line, does not change
along with the change in correlation. This can be
shown using a credit VaR, which is defined as the
excess loss, that probability of loss larger than this
value is less than a given percentage such as 1%.
The 1% credit VaR for various correlation values are
given in Table 2.

In practice, it is very important to quickly obtain
an accurate total excess loss distribution. There are
a variety of methods that have been used for the
total loss distribution. Here, we present the details on
the recursive method in a one-factor Gaussian copula
model and briefly summarize the conditional normal
approximation approach.

Table 2 Correlation vs C-VaR

Correlation (%) C-VaR

0 14.7
10 25.2
20 32.9
50 53.9
75 67.2%
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We consider a credit portfolio consisting of n

underlying credits whose notional amounts are Ni

and fixed recovery rates are Ri , i = 1, 2, . . . , n. We
consider the aggregate loss from today to time t as a
fixed sum of random variables Xi :

Ln(t) =
n∑

i=1

li (t) =
n∑

i=1

(1 − Ri) · Ni · I(τi<t)

(10)

where τi is the survival time for the ith credit in
the credit portfolio and I is the indicator function,
which is 1 in the case τi ≤ t and 0 otherwise. The
distribution function of survival time c is denoted as
Fi(t) = Pr[τi ≤ t]. The specification of the survival
time distribution Fi(t) is usually called a credit curve,
which can be derived from market credit default swap
spreads.

From the above equation, we can calculate the
total loss distribution as

FL(t)(x) = Pr[Ln(t) ≤ x] = Pr

[
n∑

i=1

Xi ≤ x

]

=
∫

Pr

[
n∑

i=1

Xi ≤ x|F
]

· dF (11)

Conditional on the common factor F , all Xi are
independent, and then we just need to calculate the
convolution of n independent random variables, c.
As discussed in the last section, we know that Xi

are independent conditional on the common factor
XM in the one-factor model. Each Xi can take
only two discrete values with constant recovery rate
assumption as follows: the loss would be 0 if default
does not occur or Bi = (1 − Ri)Ni if default occurs.

f (x|F) =
{

0, 1 − qi(t |F)

Bi, qi(t |F)
(12)

where qi(t |F) is the conditional default probability
for credit i before time t .

The density of the conditional total loss distribu-
tion can be calculated recursively over the partial sum
Lj = Lj−1 + Xj . We then have the following recur-
sive formula:

fLj
(x|F) =

{
pj · fLj−1(x|F), x < Bj

pj · fLj−1(x|F) + qj · fLj−1(x − Bj |F), x ≥ Bj
(13)

This has been described in [4] and also in [1].
The unconditional total loss distribution is obtained
by simply integrating the conditional loss distribution
over the common factor F . In the simple case of
one-factor Gaussian copula model, we use a Gaussian
quadrature for the integration over the one common
factor. In the one-parameter case, the conditional
default probability can be calculated directly as
follows:

qi(t |XM) = Pr[τi < t |XM ]

= Pr[F−1
i (N(Xi)) < t |XM ]

= Pr[Xi < N−1(F (t))|XM ]

= N

(
N−1(qi(t)) − ρ · XM√

1 − ρ

)
(14)

where qi(t) is the unconditional default probability
of credit i before time t .

Another approach uses the conditional normal
approximation. Conditional on the common factors,
all credits are independent. On the basis of the law of
large numbers, the total conditional loss distribution
can be approximated by a normal distribution. The
mean and variance of this normal distribution can be
simply calculated similarly as we do in the above
one-factor case. More details are given as follows.

Conditioning on the common factor XM , we can
compute the mean and variance of the total loss
variable, L|XM ,

Mv =
n∑

i=1

Ni · (1 − Ri) · qi (t |XM)

σ 2
v =

n∑
i=1

N2
i · (1 − Ri)

2 · qi(t |XM)(1 − qi(t |XM))

(15)

The conditional normal approach uses normal dis-
tributions to approximate the conditional loss distri-
bution. The normal distribution has the same mean
and variance as computed above. In general, other
distributions, such as inverse normal or Student-t , can
be used. The normal distribution is chosen becuase
of the central limit theorem, which states that the
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sum of independent distributions (but not identical
distribution) approaches a normal distribution as the
number of the independent distributions increases. In
this case, the independent distributions are the dis-
tributions of the indicator functions of Ni · (1 − Ri) ·
l[τi<t], which are independent when conditioned on
the common factor XM .

Given the conditional normal approach, the con-
ditional expected loss for a tranche with attachment
and detachment KT

L and KT
U can be easily computed

in closed form as follows:

E(LT (t)|XM) = (Mv − KT
L )�

(
Mv − KT

L

σv

)

+ σv · φ

(
Mv − KT

L

σv

)

− (Mv − KT
U )�

(
Mv − KT

U

σv

)

− σv · φ

(
Mv − KT

U

σv

)
(16)

where φ is the one-dimensional normal density
function.

With the calculated conditional expected loss, the
unconditional expected loss is obtained simply by
integrating over the common factor XM .

E(LT (t)) =
∫ +∞

−∞
E(LT (t)|y) · φ(y)dy (17)

However, by choosing normal distribution in its
approximation, the approach has its limitations. First,
a normal variable can have a negative value with no-
zero probability. As we know, the loss in a portfolio
should never be negative. However, this limitation
only affects the equity tranche (the most junior
tranche) and can be mitigated through the method
described below. Second, as a loss is a summation
of discrete loss variables, when a portfolio consists
of only a few underlying names, then approximating
the loss by a continuous variable (such as a normal
variable) might not be a good approximation. This
limitation also applies to some extreme case when the
loss is dominated by only a few underlying names.
In general, the conditional normal approach is a
very good approximation when the number of names
in a portfolio is larger than 30. Most of the CDO
portfolios have the number of names larger than 30.

To mitigate the negative loss problem for an equity
tranche one can use the following method, which
preserves the expected loss of a CDO portfolio. An
equity tranche [0, KT

U ] with detachment point KT
U has

payoff as follows:

LT (t) = L(t) − max[L(t) − KT
U , 0] (18)

The conditional expected loss for the equity
tranche is

E(LT (t)|XM) = Mv − (Mv − KT
U ) · �

(
Mv − KT

U

σv

)

− σv · φ

(
Mv − KT

U

σv

)
(19)

This has been proven to work well for index
equity tranche of size more than 2%. Alternatively,
we can also use inverse Gaussian distribution to
approximate for the equity tranche since inverse
Gaussian distribution takes only a positive value.

Risk Measurement and Hedging

Once a model and a mapping algorithm are chosen
we can price all credit portfolio trades, and produce a
series of risk measures based on the model. These risk
measures are then used to form a hedging strategy for
the trading book. The commonly used risk measures
are as follows:

• Credit spread delta: This is defined as the sensi-
tivity of the mark-to-market value of a position
to the instantaneous movement of the spread of a
single entity, with all other parameters remain-
ing constant. It is calculated through perturba-
tion of the individual credit curves. Individual
spread delta is reported as the change in value
of the trade for a 1 basis point (1 bp) move in
the indicated spread. Individual spread delta can
be calculated as parallel moves in the individual
curve (in which each spread on a particular curve
is moved by 1 bp in a parallel fashion) or as
bucketed moves in the curve. Individual spread
delta is calculated trade-by-trade, and aggregated
on the basis of issuer name, industry, or portfolio
level. When we change the spread, we recalibrate
the credit curve or instantaneous marginal default
probability. Global spread delta is defined as the
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change in the portfolio value change when all
the underlying reference credit curves move by
1 bp. Global spread is calculated by bumping all
spread curves of the underlying reference credits
simultaneously in a parallel way or in buckets.
Sometimes, we also study the sensitivities of our
trade or book with respect to a large spread move-
ment. Another common practice is to adjust the
individual spread movement with respect to the
index spreadsheet. The reason is that not all indi-
vidual spread moves by the same amount when
index moves. A statistical beta based on regres-
sion analysis is usually used.

• Single-name spread gamma: This is defined as
the sensitivity of individual spread delta to a 1-bp
move in a particular reference credit. As such, it
represents the second-order price sensitivity with
respect to a change in the spreads of the reference
credit. Individual spread gamma is calculated by
bumping one credit curve a time while all other
credit curves remain the same for portfolio trans-
actions. Global gamma is defined as the change
in the global spread delta (which is defined as
the portfolio value change when all the underly-
ing reference credit curves move by 1 bp) of a
portfolio for a 1-bp move in all reference credit
spreads simultaneously. Global spread gamma is
calculated by bumping all spread curves of the
underlying reference credits simultaneously in a
parallel way. Sometimes, we simply use a large
spread movement as a measure of gamma risk
by bumping the current spread by 50%. Simi-
lar to spread delta risk, we can also use bucket
gamma risks which are more computationally
challenging.

• Jump-to-default risk: We measure it by simply
assuming one-name defaults right away or at a
specific time in the future. We can also study the
group jump-to-default risk.

• Time-decay risk: This measures the risk that as
time passes, or maturity shortens, the value of
portfolio transactions changes. For portfolio credit
default swap, its survival time curve is most likely
not flat, which makes the time decay an important
risk factor.

• Correlation risk: Since we use a base correlation
curve, we could measure the risk in terms of
parallel change or bucket correlation change. In
practice, we very often see a correlation curve
twist, which reflects market changing perception

about different tranche risks. We can measure this
risk by creating a sensitivity report for the whole
book with respect to each base correlation point.

In practice, we tend to minimize spread and
gamma risks, control jump-to-default risk, and also
make correlation risk flat. We would also like to
have positive carry: we receive more cash inflow
than outflow. The hedging instruments we use are
single name and index credit default swaps and index
tranches. Very often, broker dealers tend to incur
residual risks by using hedge ratios higher than the
model-based amount to maintain a positive carry,
but this strategy does not work well all the time,
especially during turmoil, when there are unexpected
defaults or jumps in spreads. We can use index
tranche to hedge the base correlation risk. Sometimes,
we can also use the index plus complementary
tranches to hedge the correlation risk. In conclusion,
for any hedging strategy, there will be a residual risk.
Traders very often use their own view toward the
market to selectively keep some residual risk.

In conclusion, the Gaussian copula function
approach along with a base correlation method
provides a simple and flexible framework to price
basket credit derivatives. We further studied the
framework and gained some more insights of it,
especially from the conditional perspective of its
correlation structure. This shows that the Gaussian
copula function implies a too strong correlation
structure. The reason for this is that we describe
each credit using only two states: default or survival.
This simple way of binary description creates too
strong a conditional default property. It is also
associated with the simple way of specifying the
correlation structure using only one parameter or pair-
wise constant correlation, in practice, even though
the original framework allows a completely flexible
correlation matrix specification. Another possible
reason is that this framework still misses certain
fundamental driving factors such as volatilities of
individual names in the framework.

We briefly discuss the risk measurement and risk
management issues using the Gaussian copula func-
tion method. From the pricing formula, we can obtain
all necessary risk measures, such as spread DV01,
jump-to-default risk, and gamma risk of individual
spreads or the general index. We can also obtain the
sensitivities of the portfolio of portfolio transactions
with respect to each point of base correlation curve.


