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A B S T R A C T

In this study, auto regressive with exogenous input (ARX) modeling is improved with fuzzy functions

concept (FF-ARX). Fuzzy function with least squares estimation (FF-LSE) method has been recently

developed and widely used with a small improvement with respect to least squares estimation method

(LSE). FF-LSE is structured with only inputs and their membership values. This proposed model aims to

increase the capability of the FF-LSE by widening the regression matrix with lagged input–output values.

In addition, by using same idea, we proposed also two new fuzzy basis function models. In the first, basis

of the fuzzy system and lagged input–output values are structured together in the regression matrix and

named as ‘‘L-FBF’’. Secondly, instead of using basis function, the membership values of the lagged input–

output values are used in the regression matrix by using Gaussian membership functions, called ‘‘M-

FBF’’. Therefore, the power of the fuzzy basis function is also enhanced. For the corresponding models,

antecedent part parameters for the input vectors are determined with fuzzy c-means (FCM) clustering

algorithm. The consequent parameters of the all models are estimated with the LSE. The proposed

models are utilized and compared for the identification of nonlinear benchmark problems.
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1. Introduction

System identification and modeling is an essential and
important subject for controlling the systems without human
intervention. A mathematical model of the system or artificial
intelligent model which has same input–output characteristic with
model is necessary to analyze and control the system. Modeling
which is based on physical laws forms a mathematical model for
the system. However, for the identification, there is no need to use
previous knowledge and physical structure of the system, so they
are known as the black-box identification process [1]. If the
behavior of the system is much complicated, it is a big difficulty for
the identification. Because of wide variety of the systems
parameters, there is not a universal solution to identification of
systems. Due to nonlinear behavior, in the beginning of the
identification task, selection of the identification method is usually
the most difficult part. Appropriate methods can be chosen
according to system behavior and desired goal of identification.
Therefore, it is necessary to use enhanced identification methods
to determine the model that approximates the system correctly.
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In addition to the success of the identification method,
complexity of the method has gained much attention because of
its ease implementation. For that reason, linear estimation models
are more consulted in the beginning. Because of their simple
structures and well-understood behavior, linear models are widely
used in many process modeling. However, the mapping capability
of the linear models is usually failed for many noise contaminated
system or nonlinear system modeling. As a result, the linear
models need to be improved every time. Two most popular models
of linear models are the finite impulse response (FIR) and the ARX
model. Because FIR models are constructed with the lagged inputs
to capture the dynamics of the process, they are not parsimonious
and require a large number of model parameters. On the other
hand, ARX models are more parsimonious because they represent
the model output as a linear sum of both lagged inputs and
outputs. Therefore, ARX model does not require so many model
parameters. Because of the delayed output components, it has
more approximation capability than that of FIR model. Thus ARX
model is utilized numerously for identification tasks itself and in
different structures [2].

Fuzzy functions are alternate representation and reasoning
schemas to the fuzzy rule base approaches. The named ‘‘fuzzy
functions’’ are structured with the scalar variables and their
membership values are added to least squares regression matrix as
a new variable [3]. Therefore, the fuzzy system output parameters
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and least squares parameters are estimated with LSE. FF-LSE has
been proved to result 10% better than LSE. The aim of this study is
to improve the FF-LSE system performance. Although the research
based on FF system development and mathematical basics has
been started since 1999 [4–6], the practical application to the
system identification, pattern classification and regression has just
begun after Türkşen’s works [7]. In his study, the FF system and its
comparison to the fuzzy rule base were demonstrated. The FF
system is usually utilized for different problems such as, system
identification [3,8] and pattern classification [9]. Turkşen also
recently published a review on the fuzzy system model related
relation to the FF concept. The recent work, up to now, the review
of the fuzzy system model relation to the FF concept is explained in
[10].

On the other hand, a fuzzy system was developed by Wang and
Mendel using fuzzy basis functions (FBF), in a pretty construction
[11]. In that work, fuzzy basis functions or normalized membership
functions were proved as universal approximators by using Stone–
Weierstrass theorem. The parameters were estimated with
orthogonal least squares algorithm.

Organization of this paper is as follows; in the second part,
previously known linear estimation models such as, LSE, ARX, FF-
LSE and FBF modeling and the new proposed models such as, FF-
ARX, L-FBF and M-FBF modeling are explained in detail. In third
part, all methods discussed above are tested for the challenging
nonlinear benchmark systems. Finally comparisons are made on
computer simulations, and results of the study are represented
here to show effectiveness of the proposed models.

2. Fuzzy functions based ARX model

The input–output characteristic of the nonlinear systems is
changing naturally with high noise disturbance and its time
varying behavior. Therefore, the input–output appearance may be
linearly or nonlinearly changed. In order to extract these
dynamics, we need to use combinatorial models of linear and
nonlinear methods. To identify the highly nonlinear systems,
strong nonlinear models should be used such as neural network,
fuzzy logic or their complex recurrent models. These methods do
perform highly nonlinear static mapping. However for linear or
less nonlinear systems, these nonlinear models are not well
suited, resulting in less accurate identification. There should be
used linear–nonlinear methods together. Several researchers
have already focused on this topic in detail. In Ref. [12], the linear
dynamic part was constructed by Laguerre basis and the static
nonlinear part was constructed by the wavelet network, which
gives effective results. By the same construction, Laguerre basis
and fuzzy logic combination was studied in [13]. Finally, another
model [14] was designed as a combination of stable linear system
and neural network models. But in those models, the methods
were more parametric and they need to use fine optimization
methods. In fuzzy function modeling, parameters are linearly
estimated by LSE and less number of parameters is used as
compared to above models. But the regressor part of the fuzzy
function is the linear and nonlinear functions of the input–
outputs, so that the resulting system modeling is extracting
dynamics of the models as well as above more complex methods.
Therefore, fuzzy function modeling is more parsimonious than
previous models.

2.1. Least squares estimation modeling

The LSE modeling is the basic linear regression model based on
the minimization of error squares [15]. The output values {yk}
k = 1,2, . . ., N of the LSE model are the linear functions of the one or
more input values {ui,k} i = 1, . . ., nd and k = 1,2, . . ., N. Here, N is the

 
 

 

number of samples and nd is the number of inputs.

ŷðkÞ ¼ b0 þ
Xnd

i¼1

biuiðkÞ þ e ¼ b0 þ b1u1ðkÞ þ . . .þ bndundðkÞ (1)

where b0 is the constant (intercept parameter), bis are the
regressor coefficients (slope parameters) and e is the random
errors (or residuals) of the estimation and ŷðkÞ, ui(k) are the process
output and input at time step ‘‘k’’, respectively. The aim of LSE is to
find unknown parameters bis i = 1,2, . . ., nd with minimum sum
squared error. The inputs and outputs are shown in the matrix
form as following.

YN�1 ¼ ’N�ðndþ1Þbðndþ1Þ�1 þ eN�1 (2)

In this representation; wN,nd+1 is the regression matrix,
w1 � (nd + 1)(k)=[1u1(k)u2(k). . .und(k)]T is the regression vector at
time index ‘‘k’’. The YN�1 = [y1, y2, . . ., yN] represents the sampled
output, bT

ðndþ1Þ�1 ¼ ½b0;b1; . . . ;bnd� represents the parameter
vector, and eT

N�1 ¼ ½e1; e2 . . . eN� represents the error vector.
The aim is to minimize the objective function’s sum of error

squares as follows,

J ¼
XN

k¼1

½yðkÞ � ð’ðkÞbÞ�2

¼
XN

k¼1

½yðkÞ � ðb0 þ b1u1ðkÞ þ :::þ bndundðkÞ�
2 (3)

To minimize the objective function, optimally, it is necessary to
take the derivative with respect to the b parameters, resulting,

minJ ¼ ðY � ’bÞTðY � ’bÞ ¼ eT e

@J

@b
¼ 2eT @e

@b
¼ 2ðY � ’bÞTð�’Þ ¼ 0

ð�’ÞTðY � ’bÞ ¼ 0

ð’T’Þb� ’T Y ¼ 0

where b is the optimal parameter vector to minimize the sum
square errors as fallows.

b ¼ ð’T’Þ�1
’T Y (4)

2.2. ARX modeling

ARX modeling is the simplest, linear, auto regressive, equation
error model and it is a base for the other advanced stochastic block-
box models. ARX model parameters are also estimated with the
superior least squares method [1].

At first, the block-box model input–output pairs are measured
from the process and then used for the estimation of the model
parameters. The inputs and the corresponding outputs are {ui}, {yi},
i = 1,2, . . ., N respectively and N is the number of input–output
samples.

yðkþ 1Þ ¼
Xnd

i¼0

biuðk� iÞ þ
Xnp

j¼1

a jyðk� jÞ þ e (5)

where y(k) and u(k) are the process output and input at time step
‘‘k’’. In Eq. (5), nd is the number of lagged inputs and np is the
number of lagged outputs. To find the parameters bis and ajs, the
same procedure is followed as above. The matrices and equations
as in Eqs. ((2)–(4)) are constructed and optimal parameters are
calculated in the same way. The choice of the lagged vectors of the
input and output terms is dependent to system dynamics.



Fig. 1. FF-ARX model.
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2.3. FCM clustering

The FCM algorithm is one of the clustering and structure
identification methods. It was developed and used for different
purposes such as by Abonyi and Feil [16], Xiong et al. [17], and
Cheng and Lin [18]. For the proposed model, FCM algorithm is
necessary to determine the regression matrix vector membership
values and cluster centers. In FCM, the data sample can belong to
more than one cluster with different fuzzy membership values that
represent the degree of membership between data and centers of
clusters [19].

At each iteration l (l = 0,1, 2,..), the membership values (uik) and
cluster centers (ci) are determined as following;

uik ¼
1XC

j¼1

jjxk�ci jj
jjxk�c j jj

� �2=ðm�1Þ
; 1 � i � C; 1 � k � N (6)

ci ¼
PN

k¼1 uikð ÞmxkXN

k¼1

uikð Þm
; 1 � i � C (7)

The cost function which minimizes the Euclidian distance
between the cluster centers and samples can be expressed as
following.

Jm ¼
XN

k¼1

XC

i¼1

uikð Þmjjxk � cijj2; 1<m � 1 (8)

The algorithm is terminated when jjUl+1 � Uljj < e, where the U

matrix is constructed with membership values of data points
computed from Eq. (6), e is a small constant to stop clustering
algorithm and l is iteration number. Where the N is number of
samples, the C is number of clusters, and the m is weighting factor,
which is selected as 2 at all computer simulations.

2.4. Fuzzy functions based LSE (FF-LSE)

In last years, fuzzy function subject has got more attention
for the identification and classification because of its
simple structure and higher approximation capability. In the
development of fuzzy function, the LSE method and FCM
method are enough for FFs. For that reason, without any
knowledge of fuzzy system concept somebody can construct and
use the FFs for the desired task. For the FF-LSE, the least squares
regression matrix is defined as w = [1 b X], where X is the input
vectors and b is the normalized membership values of these
input vectors. The FF-LSE construction can be done in the
following steps [3].

(1) Perform the FCM algorithm and define the (local) optimum
membership values of the inputs (uik, computed from Eq. (6)).
Then determine an alpha-cut (a) to eliminate harmonics
generated by FCM.

mik ¼
uik if uik�a
a if uik <a

�
(9)

(2) Normalize the membership values mik(l) as

g ik ¼
mikðxkÞPC
i¼1 mikðxkÞ

(10)

(3) Finally construct the new least squares matrix with inputs and
these normalized membership values. The bi = {gikji = 1, . . ., C;
k = 1, . . ., N} has the normalized membership functions values.
The bi has the membership values of this vector with respect to
all centers for given input. The estimated output values are

 
 

 

written below.

YN�1 ¼ ’N�ðnpþndþ1Þbðndþndþ1Þ�1 þ eN�1 (11)

Then by using Eq. (4) we can find the parameters by LSE
method. Here different function of the membership values is
also defined and tested in [3,8] to obtain better results such as
b2, bm, exp(b).

2.5. Proposed Model 1: Fuzzy Functions in ARX model (FF-ARX)

The higher approximation capability of the ARX model with
respect to LSE for identification is embedded into fuzzy function.
In fact the FF is constructed with linear and nonlinear parts. In
other words, we combined the fuzzy functions with ARX
structure using the LSE. The resulting model is basically a linear
estimation but nonlinear in behave since membership values are
determined in nonlinear sense. For the FF-ARX model, different
delays are applied for the model and so there is seen an
enhancement in the approximation capability. The proposed
model has importance for nonlinear systems. So the correspond-
ing task is performed by using linear and nonlinear parts of the
fuzzy function together. The consequent FF-ARX model is shown
in Fig. 1.

One advantage of the FF-ARX model is the one-step modeling.
There is no need of an optimization method and hence local
minimum problem does not occur. First part of the work is
depending on the FCM clustering algorithm. Initially, inputs are
clustered at once and the resulting membership values are
determined by the FCM for the FF. Then the FF and the ARX
structures or regressors are combined to construct the FF-ARX
structure. Finally, the LSE is enough to identify complicated model
estimation.

2.6. Fuzzy Logic Systems (FLS) and Fuzzy Basis Functions (FBF)

A fuzzy system is a universal approximation tool that consists of
a set of IF-THEN type rule bases, each of which has an antecedent
and consequent parts [19]. These rule bases have rules to indicate
the system input–output relations. Rules are constructed with
linguistic propositions, which have linguistic variables and
linguistic values. In fuzzy systems, these linguistic values are
represented with membership functions. Therefore, they are the
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basic and essential elements of the rule base. A fuzzy system is not
linear with respect to membership functions. A fuzzy rule-base
consists of M rules is represented by Jang et al. [15], and Wang [19]
as follows;

Rl : IF x1 is Al
1 and x2 is Al

2 and ::: and xn is Al
n; THEN yl is Bl (12)

where l = 1,2, . . ., M, xi(i = 1,2,. . ., n), inputs to fuzzy system, y is
output variable, Al

i, Bl
i are linguistic values which are represented

by membership functions.
FLS: A fuzzy logic system can be represented as a non-

orthogonal expansion using normalized input membership func-
tions [19],

f ðxÞ ¼
XM
l¼1

plðxÞyl (13)

where yl 2 R are constants or output weights. The normalized input
membership functions pl(x) are defined as follows;

plðxÞ ¼
Qn

i¼1 mAl
i
ðxiÞPM

l¼1

Qn
i¼1 mAl

i
ðxiÞ

(14)

where l = 1,2, . . ., M rule index, and mAl
i
ðxiÞ are the Gaussian

membership functions. The fuzzy model in Eqs. (13) and (14) is
formed using singleton fuzzifier, product inference engine, and
center of average defuzzifier [19]. The Gaussian membership
functions are defined as fallows.

mAl
i
ðxiÞ ¼ exp �

xi � cl
i

bl
i

 !2
2
4

3
5 (15)

Where the cl
i , bl

i, and yl parameters are centers and variances of the
Gaussian membership functions and output weights, respectively.
In the training part of the identification, these variables are
updated with optimization algorithms such as gradient descent or
Genetic Algorithms [15,19].

FBF: A fuzzy system (Eq. (13)) can be represented by series
expansions of the basis functions (Eq. (14)) [11]. It is a linear
combination of basis that brings us to use linear estimation
methods to use parameter estimation. Differences of the FBF
system with respect to FLS, the membership function parameters
are such as centers or standard deviations in Eq. (15) are
determined by the FCM clustering algorithm or optimization
algorithms. However, the output weight parameters are estimated
by linear estimation methods. The kth sample regression vector is
defined as w(k) = [p1(k) p2(k). . .pM(k)]T, where M is the number of
rules.

The FF model in Section 2.4 and FLS model in Section 2.6 are
different methods. Due to parameter estimation, the FF concept is
more similar to the FBF modeling. However, by looking the
regression matrix construction, the FF modeling and FBF modeling
are also different methods. The small difference between
them brings the more or less degree of nonlinearity mapping.
From the simulation results, the comparison is explained between
methods.

2.7. Proposed fuzzy basis function models

The fuzzy basis function modeling brings us to see that the
fuzzy system output parameters are linearly dependent to fuzzy
system. Therefore, the output parameters can be determined in
linear sense. Here, for the sake of simplicity, all model output
parameters of FBF models are estimated with LSE.

 
 

 

2.7.1. Proposed Model 2: Lagged Terms Based Fuzzy Basis Functions

(L-FBF)

The first proposed FBF model (L-FBF) regression matrix is
constructed with lagged input–output vectors and the fuzzy basis.
The regression vector w = [1 u y p(u) p(y)]T is given by,

’ðkÞ ¼ ½1 uðk� 1Þ . . . uðk� npÞ yðk� 1Þ . . . yðk� ndÞ
m1ðuðk�1ÞÞ . . . mMðuðk� npÞÞ m1ðyðk� 1ÞÞ . . . mMðyðk� ndÞÞ�T

(16)
where the np is number of input delay, the nd is the number of
output delay. To implement this method for identification, the
following steps can be carried out.

� Define how many input–output lagged terms are used in
regression vector. It can be changed by considering the model
complexity.
� Perform FCM clustering algorithm to determine the centers of

the regressors. The Gaussian membership functions are used
with 0.5 width.
� Do normalization for the corresponding part of the regressor and

construct the regression matrix.
� Calculate the weight parameters of the model by using the LSE

method.

2.7.2. Proposed Model 3: Membership Functions Based Fuzzy Basis

Functions (M-FBF)

In the second proposed FBF model (M-FBF) regression matrix is
constructed with the lagged input–output vectors and the
membership values of these vectors. The membership functions
are chosen as Gaussians functions with 0.5 width and the centers
are determined by the FCM method. The regression vector is given
by,

’ ¼ ½1 u y mðuÞ mðyÞ�T (17)

and it is expressed more clearly as following,

’ðkÞ ¼ ½1 uðk�1Þ . . .uðk�npÞ yðk�1Þ . . .yðk�ndÞ
m1ðuðk�1ÞÞ . . .mMðuðk�npÞÞ m1ðyðk�1ÞÞ . . .mMðyðk�ndÞÞ�T

(18)
This structure does not need normalization; exact membership

value of the corresponding data is located in regression matrix. In
order to implement this method for identification, the following
steps can be carried out.

� Define how many input–output lagged terms are used in
regression vector. It can be changed by considering the model
complexity.
� Perform FCM clustering algorithm to determine the centers of

the regressors. The membership functions are chosen as
Gaussians functions with 0.5 standard deviation. Construct
regressor matrix as Eq. (17).
� Finally, calculate the weight parameters of the model by using

the LSE method.

3. Simulation results

In simulations, firstly, a simple dynamic function approxima-
tion is identified by the three proposed models and then, two
benchmark problems are employed to identify and compare the
three proposed models with other methods. In the simulations for
the faith comparison, same numbers of delays are used for inputs
and outputs. In simulation results; the ARX, the FBF, the proposed
FF-ARX, L-FBF, and M-FBF models are compared. In the end, there is
seen that the proposed models, which are the FF-ARX and the
L-FBF, have better resulting MSE values than others do. In
simulations, the alpha-cut is selected as 0.6 and e is used as
0.001 in FCM clustering.



Table 1
Comparison for Box-Jenkins data.

Model MSE (modeling) MSE (testing)

ARX Model 45.1e-3 0.305

FBF Model 419e-3 0.653

FF-ARX Model 7.5e-3 0.075

L-FBF Model 5.6e-3 0.021

M-FBF Model 7.8e-3 0.056

Fig. 3. Box-Jenkins furnace identification testing errors.
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3.1. Simple nonlinear function approximation

The aim of this testing is to see the function approximation
capabilities of proposed models before the highly dynamic
nonlinear systems identification. For training 150 samples of
input–output data is generated by the following functions [20],

ydðnÞ ¼ ydðn� 1Þ
1þ ydðn� 1Þ2

þ uðnÞ where the input

uðnÞ ¼ sin
2pn

25

� �
:

To see the effectiveness of the proposed models, the frequency
of the input and the one of function parameters are changed and
also normally distributed white noise is added to the input in test
phase. For testing 150 samples of input–output data generated by
the following functions,

ydðnÞ ¼ 1:5� ydðn� 1Þ
1þ 1:5� ydðn� 1Þ2

þ uðnÞ where the input

uðnÞ ¼ sin
2pn

50

� �
þ y;y�Nð0;0:22Þ

In this simulation, the input uk�1 and the output yk�1 vectors are
clustered in two groups. As a result, the regression matrix is
constructed by seven vectors for the FF-ARX, the L-FBF and the M-
FBF models. It means that seven parameters are used to
approximate the function. The used regression vector is

’ ¼ ½1 uk�1 yk�1 gðuk�1;ucc1Þ gðuk�1;ucc2Þ
gðyk�1; ycc1Þ gðyk�1; ycc2Þ�

where ucs and ycs are the cluster centers of the corresponding
inputs and the g(.) function is changing for three proposed models.
It is the normalized membership values of the inputs for the FF-
ARX model, it is the basis function of the corresponding inputs for
the L-FBF model, and finally, for the M-FBF model, it is the
membership values of the inputs and outputs. The Gaussian
membership functions are used and their centers are obtained by
the FCM clustering. The resulting identification performances of
the methods are represented in Fig. 2.

3.2. Box-Jenkins furnace identification

In this part of simulation study, Box-Jenkins furnace [21]
identification is used to compare model capabilities. This data is
frequently used in performance evolution of system identification
methods [21–23]. First, the data is scaled with subtracting mean of

 
 

 

Fig. 2. Function approximation.
data and dividing by standard deviation of data. First 200 input–
output samples are used for the modeling the system and last 90
input–output samples are used for the testing and the resulting
MSE values are shown in Table 1. The test output errors of
compared models are shown in Fig. 3. The instantaneous model
output ŷðkÞ is formed by using six regressors, i.e. regression vector
Fig. 4. Training and test performances for nonlinear dynamic model identification

example (training for t = 1:600, and testing for t = 601:1000.) The system output is

represented with line, and the approximations are represented with dashed dot

line.



Table 2
Comparison for nonlinear dynamic model.

Model MSE (modeling) MSE (testing)

ARX Model 18e-3 22.3e-3

FBF Model 5.7e-3 51.7e-3

FF-ARX Model 2.5e-3 10.7e-3

L-FBF Model 2.4e-3 7.5e-3

M-FBF Model 2.9e-3 38.4e-3
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w include y(k � 1), y(k � 2), y(k � 3), y(k � 4), u(k � 1), u(k � 2),
and u(k � 3). When modeling the system there is used different
number of centers to get minimum MSE values. For this benchmark
problem the optimal number of centre is selected as 2.

3.3. Dynamic nonlinear model identification

The other data is generated by another well-known benchmark
problem. The identification of this dynamical system is most
frequently used in the literature for comparing different learning
algorithms and model types [24,25].
uðkÞ ¼
sinð2pk=25Þ k ¼ 1 . . . 250

1 if k ¼ 250 . . . 500
�1 if k ¼ 500 . . . 750

0:3sinðkp=25Þ þ 0:1sinðkp=32Þ þ 0:6sinðkp=10Þ k ¼ 750 . . . 1000

8>><
>>: (19)

yðkÞ ¼ ½yðk� 1Þyðk� 2Þyðk� 3Þuðk� 2Þ � ððyðk� 3Þ � 1Þ þ 0:5Þ þ uðkÞ�
½1þ yðk� 2Þ2 þ yðk� 3Þ2�

(20)
In this simulation totally 1000 samples are used. The first 600
samples for modeling the system and the last 400 samples are for
the testing. The estimated outputs for all compared models are
constructed with following functional form.

ŷðkÞ ¼ f ðuðk� 1Þ;uðk� 2Þ;uðk� 3Þ;uðk� 4Þ; yðk� 1Þ; yðk

� 2Þ; yðk� 3Þ; yðk� 4ÞÞ (21)

After some trials, the number of centers is selected as 4 and
optimal alpha-cut is selected as 0.6 for this benchmark problem.
The resulting MSE values for different models are shown in Table 2
and simulation results are shown in Fig. 4.

This identified system is highly nonlinear and dynamic thus it is
difficult to identify by linear estimation models. In the benchmark
data, the test input–output signals differ than the modeling signals.
Even so it is modeled and tested with small MSE values.

4. Conclusion

In this paper, we have proposed the FF-ARX, the L-FBF, the M-
FBF models and compared their estimation capabilities. The FF-
ARX model and the L-FBF model have better function approxima-
tion capability with respect to the other known LSE models. The
power of FF and ARX models are combined in the proposed FF-ARX
model to improve system identification parameters. On the other
hand, in the L-FBF model, the power of the nonlinear structure of
the FBF and linear structure of the other basis are combined using
the LSE. The FBF models are nonlinear with respect to inputs. The
whole LSE based models are simple to construct and use for
identification of nonlinear dynamic systems. The proposed models
are simple and feasible compared to existing nonlinear system
identification methods. Our results indicate that the fuzzy function
subject has improved in the proposed ARX model structure and in
the proposed L-FBF model structure.
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