
 

 

 

Orthogonal Defect Classification

Using Defect Data to Improve Software Development

by

Norm Bridge

Motorola Corporate Software Center

Schaumburg, Illinois

 

Corinne Miller

Motorola GSM Products Division

Arlington Heights, Illinois

 

 

ABSTRACT - This paper will present a framework developed by IBM for classifying and analyzing defect data
collected during software development. The paper will describe Orthogonal Defect Classification (ODC) and
illustrate how ODC can be used to measure development progress with respect to product quality and identify
process problems. Next, the paper will present the results of a feasibility study conducted by the Motorola
Corporate Software Center, Software Solutions Lab (CSC/SSL) and the Cellular Infrastructure Group, GSM
Products Division’s Base Station Systems (GSMBSS) software development group using ODC. Finally,
GSMBSS’s future plans for deploying ODC are discussed.

 

KEY WORDS - Defect Prevention, Orthogonal Defect Classification, Inspections, Process Improvement,
Quantitative Process Management, Root-Cause Analysis.

 

1. Introduction

 

Formal Inspections are currently used throughout Motorola to identify software errors near the point of
insertion. In 1996 nearly 85% of all product software developers within Motorola reported that they used formal
inspections on their development projects. GSMBSS has been conducting Fagan Inspections since 1992. Since
then they have amassed a large amount of data on software defects. While analysis of this data has resulted in
improved containment, continuing to reduce defects by 10X every two years is becoming increasingly more
difficult. GSMBSS, like most software development organizations, has struggled with how to better utilize data



collected from defects to measure the progress of the product quality during development, and how to use the
data to identify and eliminate process problems.

 

Traditionally, two distinct techniques, Statistical Defect Modeling and Casual Analysis, have been used to
analyze data collected from software defects. Statistical Defect Modeling considers each defect as a random
sample from an ensemble to which a statistical model is fitted. This includes statistical methods such as,
counting techniques, comparisons with historical data, and reliability modeling. While Casual Analysis
considers each defect as a unique occurrence and attempts to find the root-cause for each defect.

 

Neither of these techniques are universally applied due to the difficulties associated with each of them.
Analyzing the number of defects alone is too general to be useful for process improvement, while analyzing
individual defects to determine their root-cause is time consuming, expensive and does not generalize well to
future releases. In addition, the analysis and feedback is normally too late to benefit the development project
that created the defect. To overcome this problem with casual analysis, many software organizations are
instituting end of phase post mortems. However, this is costly since improvement activities are focused on the
entire development process, instead of the "hot spots." Another problem often experienced with these traditional
approaches is the inconsistent classification of defects as a result of unclear and overlapping defect
classifications. This makes it difficult to do reliable statistical analysis. Finally, these approaches require
specially trained staff to perform the analysis.

 

2. Orthogonal Defect Clas-sification

 

In order to model the software development process as a controllable and observable system explicit input-
output or cause-effect relationships must be known. Numerous software researchers and industry experts have
defined various methods for classifying software defects. Most of the methods developed to date fail to
sufficiently quantify the key cause and effect relationships. It is not sufficient to collect a lot of data and hope
that some subset of the data will explain the process.

 

A breakthrough study [5] conducted by Ram Chillarege, et. al. from IBM’s Watson Research Center showed
that when defects are uniquely categorized by the semantics of the fix, it is possible to relate changes in the
shape of the reliability growth curve to defects of a specific type. The IBM study showed that defects of a
specific type were the result of a cause in the process that resulted in an effect on the reliability growth curve.
This study forms the basis for Orthogonal Defect Classification (ODC).

 

ODC is a method for classifying and analyzing software defects. It bridges the gap between statistical defect
modeling and casual analysis. ODC classifies each defect based upon the semantics of the defect correction and
links the defect distribution to the development progress and maturity of the product. It provides an in-process
measurement paradigm that extracts key properties from defects and enables measurement of cause-effect
relationships as opposed to a mere taxonomy of defects for descriptive purposes.

 

ODC is based upon the principal that different types of defects are normally discovered during different phases
of the software development life cycle and that too many defects of the wrong type discovered during a
particular phase may indicate a problem. In other words, ODC uses the distribution of defect types throughout



the software development life cycle to produce a signature for the development process, see figure 1.

 

ODC essentially means that software defects are
categorized into classes that collectively point to the
part of the development process that needs attention.
It is used to characterize defects and identify process
problems that result in product defects in the same
way as x,y,z coordinates are used to identify a point
in a Cartesian system of orthogonal axis.
"Orthogonal" simply means that the defect
classification categories used to characterize a defect
don't overlap and are statistically. independent of
each other.

 

[1] defines the following necessary and sufficient
conditions for ODC:

 

Necessary Condition - There exists a semantic classification of defects such that its distribution, as a function of
process activities, changes as the product advances through the process.

 

Sufficient condition - The set of all values of defect attributes must form a spanning set over the development
process.

 

3. ODC Defect Attributes

 

The challenge for any software defect measurement scheme is to identify a minimal set of defect attributes, in
order to keep the classification simple and the overhead added to the development process minimal, while
completely mapping all activities of the development process. ODC uses two attributes, Defect Type and Defect
Trigger, to provide measurement instruments of the casual relationship of software defects. The Defect Type
characterizes the defect based upon the nature of the change to fix the defect. It provides a measurement of the
progress of the product through the development process. The Defect Trigger characterizes the defect based
upon the catalyst that caused the defect to surface and result in a failure. It provides a measurement of the
verification process. A third attribute, Defect Impact, is used to meter the impact of the defect in terms of the
effect of the failure on the customer.

 

ODC does not imply use of only these three attributes. These attributes should be collected in addition to the
traditional defect attributes such as phase found, severity, and missing, incorrect, extra. Any attribute-value set
that satisfies the necessary and sufficient conditions can be considered part of ODC. Additional attributes such
as the source of the defect, which characterizes the type of code corrected (new, old, reused, vendor, etc.)
should be collected along with software size, team size, experience, etc., to characterize the development
environment. The key is to create a measurement framework from a minimum set of attributes, that can be
sliced various ways to provide visibility into the fundamental issues effecting the software development
process, and that is broadly applicable and easily expandable.



 

3.1 Defect Type

 

ODC uses eight categories for defect type, Interface, Function, Build/Package/Merge, Assignment,
Documentation, Checking, Algorithm, and Timing/Serialization (see Appendix I). These defect type categories
defined by IBM [1] apply to any software development project, independent of the process or product. The
defect type is based upon the semantics of the defect correction. The categories for defect type are independent
of the software product or development process used. The categories span all software development life cycle
phases, while at the same time each category is associated with a particular development activity. As illustrated
by figure 1, Function defects are typically associated with requirements or high-level design inspections since
they constitute the majority of defects found during these phases. While, Timing/Serialization are normally
associated with system testing activities.

 

The relative trend from phase to phase for each defect type category indicates the progress of the product
through the development process. For example, see figure 2, for a typical waterfall development process, a
project may be chronologically in the function test phase, but an increase in the percentage of Function defects
found relative to coding or design may indicate that the product in actuality should still be in coding or design.
This provides an early indication of a process problem only one phase removed from the point in the process
that needs attention. With traditional methods the problem would not be identified until integration and system
testing or later.

 

3.2 Defect Trigger

 

ODC uses three sets of defect triggers, Review and
Inspection Triggers, Unit and Function Test Triggers,
and System and Field Test Triggers, (see Appendix I).
For defects found after the software is released to the
customer, the trigger is selected from the set of
triggers for the testing activity that should have most
appropriately detected the defect prior to release. The
trigger for a defect is assigned based upon the testing
activity that caused the defect to manifest itself as a
failure. For example, if during an inspection a defect
is discovered as a result of examining the design for
compatibility with previous versions of the system
the defect trigger would be Design Compatibility.
The defect trigger provides a measure of the
thoroughness of the verification process.

 

The defect trigger should not be confused with the symptom of the defect which is the visible effect of a defect
that results in a failure. For example, if during an inspection while considering compatibility of the new
software with previous versions of the system, a reviewer discovers an assignment error that would result in a
particular icon not being properly displayed, the symptom is the icon not being displayed, the trigger is
backward compatibility, and the defect type is assignment.

 



The defect trigger can be used either alone or in combination with other defect attributes. Alone, defect triggers
can be used to improve the effectiveness of system testing. For example, the distribution of defect triggers from
system test and field/beta testing should be similar. Any difference in the distribution indicates areas of
weakness in the system testing. The system testing should be enhanced to provide additional testing using the
triggers that resulted in a higher percentage of field/beta testing failures.

 

3.3 Defect Impact

 

Defect Impact provides a mechanism to relate the impact of software defects to customer satisfaction. This
allows quality improvement efforts to be focused on reducing the defects that most significantly impact
customer satisfaction as opposed to blindly reducing the total number of defects. The defect impact is used in
addition to defect severity. Severity assesses the magnitude of the failure while impact assesses the capability of
the product effected by the defect.

 

IBM [15] defines nine defect impact types, Capability, Usability, Performance, Reliability, Installability,
Maintainability, Documentation, Migration, Standards, and Integrity/Sequirity (see Appendix I). These
categories were established by IBM based upon customer surveys of what product attributes were most
important to their users. Each defect is assigned an impact type based upon the effect that a failure would have
on the customer had the defect escaped to the field.

 

4. GSMBSS ODC Feasibility Study

 

The GSMBSS Process Improvement Coordination Team (PIC Team) was in search of additional defect
prevention and quantitative process management technologies to supplement the Fagan inspection controls

already utilized. It was very important that any new technology be
piloted and phased into the organization's existing process without a
revolutionary upheaval. Thus, the possible synergy of ODC with
GSMBSS's Fagan inspection data was especially attractive to the
team.

 

In addition, GSMBSS had been performing statistical correlations
between their quality metrics and customer satisfaction scores for
over a year. They also had recently introduced a customer Cost Of
Ownership Leader (COOL) metric to measure product attributes and
services that directly impact the customer’s ability to profit from
using GSMBSS’s products. The customer focus aspect of ODC
appeared to provide a vital method to link internal defect prevention
activities with the cost of ownership metric and onto external
customer satisfaction. The timing was right to integrate ODC into
the customer-focused defect prevention strategy if the ODC
feasibility study proved successful.

 

The objective of the feasibility study was to determine:



1. If ODC concepts could utilize GSMBSS's existing Fagan defect classification categories.

 

2. Confirm that ODC did in fact result in unique process signatures.

 

Since GSMBSS was already collecting defect data, they did not want to abandon their large database of
historical defect data and introduce an entirely new defect classification scheme to their development staff. The
plan was to see if it was possible to map GSMBSS's Fagan inspection fault types to the ODC defect types and
determine if the resulting process signatures were similar. If this proved plausible, ODC would be considered by
GSMBSS for deployment. The final decision rested with the Defect Prevention and PIC Team's review of the
technology evaluation report.

 

4.1 ODC Feasibility Study Results

 

The first step of the feasibility study was to map GSMBSS's defect categories to the ODC defect categories.
Table 1 shows the resulting mapping. Many of the GSMBSS defect categories satisfied ODC's sufficient
condition, that the set of all defect categories must form a spanning set over the process subspace. The question
was, did they also satisfy the necessary condition, that the distribution, as a function of process activities,
changes as the product advances through the development process?

 

To test whether or not the GSMBSS Fagan Inspection fault types satisfied the necessary condition, the authors
chose three software features from completed GSMBSS projects and classified the defects using the ODC fault
types. Next we plotted a histogram of the ODC and GSMBSS defects for each development phase and
compared the results. Figure 3 shows the ODC defect categories for the three features selected, while Figures 4
shows the GSMBSS fault categories for the corresponding features.

 

Figures 3 shows how the distribution for each ODC defect type changes as the feature passes through the



development process and how the distribution is a function of process activities. For example in figure 1, the
percent of assignment type defects found increases from requirements (REQ) to high-level design (HLD) to
low-level design (LLD) to code. While, the percent of interface defects found decreases from REQ to HLD to
LLD to code. This is the expected distribution or signature for a typical waterfall development process.

 

The features used for this study were small. As a result, for an individual feature some phases only had a small
number of defects of a particular type, or none at all were discovered. This caused some anomalies in the
signatures for the individual features when plotted in terms of percent. For example for feature C, only three
defects were found during HLD causing the trend for checking defects to decrease from HLD to LLD. Normally
this would indicate a process problem, since it is logical to expect a higher percent of checking errors to be
found during LLD and Code than HLD. However in this case, the small number of defects found during HLD
causes the trend to be skewed. Therefore, for small projects or features it is important to look at both the percent
and absolute number of defects.

 

Note that even though the
trend or signature for each
defect type was similar for
each feature the type and
number of defects
discovered in each phase
was different. This is
because the number of
defects is a function of the
complexity and
functionality of the
product. GSMBSS plans to
use historical defect data
and product and project
attributes in combination
with ODC to help calibrate
the magnitude of each
defect type from phase to

phase.

 

Figure 4 shows the defect data for features A, B, and C using GSMBSS's Fagan Inspection fault types. Two
problems with the Fagan Inspection fault types make it difficult to identify defect trends from phase to phase.
First, some of the Fagan Inspection fault types only apply during a particular development phase. Secondly,
some of the Fagan Inspection fault types are not orthogonal, i.e. they are not independent and they overlap. This
along with the larger number of categories, makes it difficult to identify a process defect signature in figure 4
using GSMBSS's Fagan Inspection fault types.

 

GSMBSS did not want to completely abandon the wealth of historical data they had compiled using their Fagan
Inspection fault types. So for the features studied, the authors attempted to map the GSMBSS Fagan Inspection
fault types to the single, most appropriate ODC defect type. The resulting ODC defect type distribution is
shown in figure 5.

 

The expected process signature is more clearly visible in figure 5 than it was from using the GSMBSS Fagan



Inspection fault types, figure 4. The authors next looked at the actual mapping of the Fagan Inspection fault
types to ODC defect types for the three features studied to see if some minor adjustments could be made to the

GSMBSS defect types in
order to more closely
adhere to the ODC
principles (Table 2).

 

Table 2 shows that four
Fagan Inspection fault
types map to multiple
ODC defect types. These
four fault types, CL -
Clarification, EH - error
handling, LO - logic, MN -
Maintainability, account
for nearly 50% of the total
defects found during
development for the
features investigated. We
recognized that these four

Fagan Inspection fault types are actually additional
defect attributes that qualify the nature and trigger of
the defect type. Clarification (CL) qualifies the nature
of the defect and can be added as an additional
enumeration to missing/wrong/extra. While, Error
Handling (EH), Logic (LO), and Maintainability

(MN) are defect trigger attributes which identify the catalyst that causes a defect to be discovered. Error
Handling and Logic are the same as the ODC triggers Recovery/Exception and Operational Semantics
respectively. While Maintainability is an additional defect trigger type not defined by IBM.

 

Thus, we concluded that with only a few minor modifications, GSMBSS's Fagan Inspection fault types can be
mapped directly into the ODC defect types. This will allow GSMBSS's PI team to map the Fagan Inspection
fault types to the ODC defect types without introducing a completely new defect classification scheme to the
GSMBSS software developers. The resulting process signatures from the ODC defect types can be reviewed
during development to provide an early indication of the quality of the product. While, the finer level of
granularity that the Fagan defect types provide can be maintained to aid in performing root-cause analysis.

 

4.2 ODC Feasibility Study Findings

 

The GSMBSS ODC feasibility study successfully demonstrated that ODC does result in a defect distribution
that is a function of the development process and that deviations from the expected "process signature" can be
used to provide an early indication of product/process quality problems. The feasibility study also showed that
with only a few minor modifications, the GSMBSS's Fagan Inspection fault types can be easily mapped directly
into the ODC defect types.

 

4.3. GSMBSS ODC Implementation Plans



 

Once GSMBSS's Defect Prevention and PIC Teams were satisfied that the organization's Fagan Inspection fault
types could be mapped to the ODC defect types with only a few minor modifications, they were sold on the
benefits of deploying ODC. A four phased implementation plan was developed to deploy ODC, to improve
defect analysis and prevention throughout GSMBSS's development life cycle.

 

The plan was designed to integrate the ODC methodology into the software development life cycle from the
beginning and ending phases first and then work inwards. Even though GSMBSS was already doing root cause
analysis of post release defects, the plan was to use ODC to quantitatively focus this analysis on the defects
most impacting the customer. While at the same time, the plan also included integrating ODC into the front end
of the development process to produce in-process defect signatures from inspection data. GSMBSS added ODC
in-process defect signatures to their data warehouse plans as a component of feature characterization and
modified their end of phase exit criteria to include a review of the in-process defect signatures.

 

Phase 1 of the implementation plan is currently underway. It involves three parallel efforts: The analysis of post
released defects from 1996 in terms of defect type, trigger, and impact for causal analysis; use of in-process
defect signatures by the feature development teams; and use of in-process defect signatures by the Systems
Integration and Test teams.

 

A team of five experienced development engineers
representing all GSMBSS product development
functional areas was used to categorize all post
release defects from 1996 by Defect Impact. It took
them approximately six minute per defect. The
results are shown in figure 6. The team used a subset
of IBM's ODC impact types since the impact types
cover all system problem areas, not just software.
Except for a few minor changes, migration was
renamed to expandability and optimisability was
added, the ODC impact types defined by IBM
mapped directly to GSMBSS's COOL metric.

 

Another team made up of experienced System
Integration and Test (SITG) engineers was assembled
to determine the defect trigger and type for the set of
post release defects and analyze the results to identify
test related corrective actions. The team required less

than 3 minutes per defect to assign the defect trigger. The results are shown in figure 7. The next task for the
team is to determine the Defect Type for each defect. An on-line defect reporting form is currently being
enhanced to collect the Impact and Trigger information in the future.

 

GSMBSS is currently determining appropriate Fagan Inspection fault type defect signatures commensurate with
those published by IBM for ODC. The signatures will be reviewed by the leads of the various feature
development tasks to direct in-process corrective actions throughout the design, code, and development test life
cycle phases. The PI Team will analyze the results to determine process improvement efforts and to evolve the
GSMBSS signatures over time.



 

The results of the combined defect signatures and Fagan inspection control charts will be reviewed by the SITG
prior to the onset of system integration and testing to identify potential problem areas that may require changes
to the SITG testing strategy. This may include testing higher risk features sooner or more robust testing of
certain features. As escaped defects for each feature are correlated back to the offending feature, the ability to
characterize the quality of similar features in the future will evolve.

 

5. Conclusions

 

This paper has presented an overview of Orthogonal Defect Classification (ODC). In it we showed how ODC
can be used to provide process improvement feedback to developers. We also showed how ODC is used to
measure the progress of development and to focus improvement activities on the areas that most impact the
customer. The principals behind ODC were demonstrated by the results of GSMBSS's ODC feasibility study.

 

The authors believe that ODC can be easily applied
by Motorola software development organizations
striving to achieve continuous quality and customer
satisfaction improvement. ODC forms an excellent
foundation for the development of defect prevention
and quantitative process management techniques,
similar to those that have been used for years by
Motorola's manufacturing operations.

 

6. Acknowledgments

 

The authors wish to acknowledge the support
received from GSMBSS in conducting the feasibility
study. Barbara Hirsh, GSMBSS metrics champion,
was instrumental in supporting this effort. She
collected and assisted with the classification and

analysis of GSMBSS's inspection data for the feasibility study. Without her help this paper would not have been
possible. The authors also acknowledge the strong support by Christine Ioriatti and Vernon Hamlin, who
supported the study and fostered follow-on actions to make positive changes based on the results.

 

7. References

 

[1] Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., and Wong,
M.-Y., "Orthogonal Defect Classification - A Concept for In-Process Measurements," IEEE Transactions
on Software Engineering, vol. 18, no. 11, November 1992, pp.943-956.

 



[2] Chillarege, R., and Bassin, K., "Software Triggers as a function of time- ODC on field faults,"
Fifth IFIP Working Conference on Dependable Computing for Critical Applications, September 1995.

 

[3] Chillarege, R., "ODC for Process Measurement, Analysis and Control," Fourth International
Conference on Software Quality, October 1994.

 

[4] Bhandari, I.S., Halliday, M.J., Tarver, E.D., Brown, D.D., Chaar, J.K., Chillarege, R., "A Case
Study of Software Process Improvement During Development," IEEE Transactions on Software
Engineering, vol. 19, no. 12, December 1993, pp. 1157-1170.

 

[5] Chillarege, R., Kao, W.-L, Condit, R.G., "Defect type and its impact on the growth curve," Proc.
13th Int. Conf. Software Engineering, 1991.

 

[6] Bhandari, I., Halliday, M.J., Chaar, J., Chillarege, R., Jones, K., Atkinson, J.S., Lepori-Costello,
C., Jasper, P.Y., Tarver, E.D., Lewis, C.C., Yonezawa, M., "In-process improvement through defect data
interpretation," IBM Systems Journal, vol. 33, No. 1, pp182-214, 1994.

 

[7] Bhandari, I.,Wong, M.Y., Chillarege, R., Ray, B., Choi, D., "An Inference Structure for Process
Feedback: Technique and Implementation," Software Quality Journal, Vol. 3, No. 3, pp167-189, September
1994.

 

[8] Chillarege, R., Biyani, S., "Identifying Risk Using ODC Based Growth Models," Fifth
International Symposium on Software Reliability Engineering, November 1994.

 

[9] Sullivan, M., Chillarege, R., "A Comparison of Software Defects in Database Management
Systems and Operating Systems," 22nd International Symposium on Fault-Tolerant Computing, July 1992.

 

[10] Chaar, J.K., Halliday, M.J., Bhandari, I.S., Chillarege, R., "On The Evaluation of Software
Inspections and Tests," International Test Conference, 1993.

 

[11] Halliday, M.., Bhandari, I., Chaar, J., Chillarege, R., "Experiences in Transferring a Software
Process Improvement Methodology to Production Laboratories," Second International Conference on
Achieving Quality in Software, October 1993.

 

[12] Chaar, J.K., Halliday, M.J., Bhandari, I.S., Chillarege, R., "In-Process Evaluation for Software
Inspection and Test," IEEE Transactions of Software Engineering, vol. 19, No. 11, November 1993, pp.
1055-1070.

 



[13] Sullivan, M., Chillarege, R., "Software Defects and their Impact on System Availability - A Study
of Field Failures in Operating Systems," 21st International Symposium on Fault-Tolerant Computing, June
1991.

 

[14] Lyu, M.R., editor, Handbook of Software Reliability Engineering, McGraw-Hill, New York,
1995, pp.359-400.

 

[15] Kaplan, C., Clark, R., Tang, V., Secrets of Software Quality : 40 Innovations from IBM, McGraw
Hill, New York, 1994, pp.319-328.

Appendix I: ODC Definitions

 

Defect Impact - The Defect Impact provides a mechanism to relate the impact of software defects to customer
satisfaction. For defects found prior to release, the Defect Impact captures information on the effect of a defect on
the end user in the event that a defect had escaped to the field and resulted in a failure. For customer reported
defects, the Defect Impact captures information on the actual customer impact.

Capability

The ability of the product/system to perform its intended functions and satisfy the customer's functional
requirements.

Usability

The ease with which the product/system can be easily understood and utilized by the customer to perform
its intended function.

Performance

The speed and responsiveness of the product/system as perceived by the customer.

Reliability

The ability of the product/system to consistently perform its intended functions without unplanned
interruption.

Installibility

The ease with which the product/system can be easily prepared and placed into service.

Maintainability

The ease with which a failure can be diagnosed and the product/system can be upgraded to apply corrective
fixes without impacting the customer's data and operations.

Documentation

The degree to which the product/system documentation and user's manuals are correct and aid in the
customer's understanding and use of the product/system.

Migration



The ease and degree to which the product/system can be upgraded to the newer release without impacting
the customer's data and/or operations.

Standards

The degree to which the product/system conforms to established pertinent standards.

Integrity/Security

The degree to which the product/system is protected from inadvertent or malicious destruction,
modification, or disclosure.

 

Defect Trigger - The Defect Trigger is the catalyst that caused a defect to manifest itself as a failure. It provides
a measure of the effectiveness of the verification process. Separate triggers are defined for reviews and inspections,
unit and function test, and system and field test. Customer reported defects are assigned triggers from all three
categories.

Triggers during Review and Inspection Activities

(Note: *Indicates may also be used for field defects.)

Design Conformance* - The error was detected while comparing the work product being inspected with
the corresponding specification from the prior development phase(s).

Operational Semantics (Understanding flow) - The error was detected while considering the logic flow
needed to implement the function under review.

Concurrency - The error was detected while considering the synchronization needed between tasks to
control a shared resource.

Backward Compatibility* - The error was detected while considering the compatibility between the
function described by the work product under review and that of prior versions of the same product. Note,
this requires that the inspector have extensive product experience and familiarity with the function under
review.

Lateral Compatibility* - The error was detected while considering the compatibility between the function
described by the work product under review and other systems/subsystems or functions that it must
interface with. Note, this requires that the inspector have broad-based knowledge of the system under
development.

Rare Situation - The error was detected while considering some abnormal system behavior that is not
specified by the requirements for the function under review. Note, this requires that the inspector have
extensive experience and/or product knowledge.

Side Effects - The error was detected while considering some system, product, function, or behavior that
may occur that is beyond the scope of the work product under review. However, the side effects would be
characterized as the result of normal usage or configurations of the system. Note, this requires the inspector
to have extensive experience and/or product knowledge.

Document Consistency/Completeness (Internal Document) - The error was detected while reviewing the
work product for consistency/completeness and conformance to documentation standards.

Language Dependencies - The error was detected while reviewing the work product for implementation
language specific details.



Triggers during Unit and Function Test Activities

(Note: *Indicates may also be used for field defects.)

Simple Path Coverage - The error was detected by using White/Gray Box testing to execute simple code
paths related to a single function.

Combinatorial Path Coverage (Complex Path) - The error was detected by using White/Gray Box testing
to execute combinations of code paths related to multiple functions. the test case that found the defect was
executing combinations of code paths.

Test Coverage* - The error was detected by using Black Box testing to exercise a single function with
either no or a single set of input parameters.

Test Variation* - The error was detected by using Black Box testing to exercise a single function using
multiple sets of input parameters, such as illegal values, boundary conditions, and various combinations of
parameters.

Test Sequencing* - The error was detected by using Black Box testing to execute multiple functions in a
very specific sequence. This trigger applies only if the functions operate correctly when tested
independently, but fail when executed in a particular sequence.

Test Interaction* - The error was detected by using Black Box testing to execute multiple functions in
combination. The interaction involves more than a simple sequencing. This trigger applies only if the
functions operate correctly when tested independently but fail when executed in together.

Triggers during System and Field Test Activities

(Note: *Indicates may also be used for field defects.)

Workload Volume/Stress* - The error was detected while operating the system at or near some resource
limit, either upper or lower.

Normal Mode - The error was encountered under normal operating conditions without exercising any
particular test suit and with the system operating well within resource constants. This trigger should only be
used when system test scenarios can not be executed because of basic problems that block their execution.

Recovery/Exception* - The error was detected as a result of executing an exception hander or recovery
code. The error would not have be discovered if some earlier event had not caused error handling or
recovery processing to be invoked. Note, this trigger is selected only when the error is in the systems ability
to recover from a failure, not the failure itself.

Startup/Restart* - The error was detected while the system/subsystem was being initialized or restarted
following an earlier shutdown or complete system or subsystem failure.

Hardware Configuration* - The error was detected as a result of testing a particular hardware
configuration.

Software Configuration* - The error was detected as a result of testing a particular software configuration.

Triggers for Customer Reported Failures In the case of field reported defects, select a trigger from any of
the trigger categories based on what the customer was attempting to do or that best matches the condition
that was the catalyst for the failure. For example, if a customer entered a single command with no
parameters, the trigger would be Test Coverage. Normally only those triggers marked with an asterisk
should be used for field defects.



 

Defect Type - is based upon the semantics of the defect correction, i.e. it is assigned based upon the description
of the action taken to fix the problem. The Defect Type attributes are independent of the development process and
span all live cycle phases. The Defect Type provides a measure of the products maturity.

Interface - The defect was the result of a communication problem between subsystems, modules,
components, operating system, or device drivers, requiring a change, for example, to macros, call
statements, control blocks, parameter lists, or shared memory.

Note: A defect that is the result of passing the wrong type of variable is an interface defect, while a defect
that is the result of passing the wrong value is an assignment.

Function - The defect was the result of the omission or incorrect implementation of significant capability,
end-user interfaces, product interfaces, interface with hardware architecture, or global data structure(s).

Build/Package/Merge - The defect was encountered during the system build process, and was the result of
the library systems, or with management of change or version control.

Assignment - The defect was the result of a value incorrectly assigned or not assigned at all. Note that a
failure correction involving multiple assignment corrections may be of type Algorithm.

Documentation - The problem was the result of an error in the written description contained in user guides,
installation manuals, prologues, and code comments. Note this should not be confused with an error or
omission in the requirements or design, that might be a Function or Interface defect type.

Checking - The defect is the result of the omission or incorrect validation of parameters or data in
conditional statements. Note a fix involving the correction of multiple checking statements may be of type
Algorithm.

Algorithm - The defect is the result of efficiency or correctness problems that affect the task and can be
fixed by (re)implementing an algorithm or local data structure.

Timing/Serialization - The defect is the result of a timing error between systems/subsystems, modules,
software/hardware, et. or is the result of the omission or an incorrect use of serialization for controlling
access to a shared resource.


