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Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users
in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for
organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization
of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research
reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment
and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its
scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods,

like V-MCT and priority scheduling algorithms.

1. Introduction

Cloud computing is an innovative, cost-effective delivery
model [1], which is fast becoming an adaptable technology
for many of the organizations with its dynamic scalability
and usage of virtualized resources as a service through the
Internet. In IaaS cloud, the resources (compute capacity and
storage) are provided in the form of virtual machines to users.
The objective is to deliver virtual servers having a predefined
configuration [1]. An additional objective is to minimize
underutilizations of the underlying infrastructure ensuring
effective efficiency. To this end, resource management and
scheduling are the required mechanism. The primary chal-
lenge of scheduling in a cloud environment is the allocation
of available resources effectively thereby improving efficiency
of the whole cloud computing environment. Presently, most
of the cloud providers rely on simple resource allocation
policies like immediate and best effort [2]. Though advanced
reservation technique is a well-studied phenomenon in
grid environment, immediate and best effort provisioning
is preferred in public clouds owing to the dynamic nature
of incoming request. Primary reason for the absence of
predictability or a predefined usage pattern of cloud requests
is its dynamic nature. Hence advanced reservation technique

continues to be restricted in grid and is considered to be not
appropriate for public cloud. However, this scenario is a little
different for organizational cloud (private cloud) where it is
possible to predict a usage pattern at least to an extent. This
is perhaps due to the fact that a private cloud is owned and
maintained by an organization and is typically used by the
employee and other people related to that organization. This
is the reason, we argue, that in private cloud with predictable
resource usage, scheduling with different policy will enhance
the resource utilization and ensure the guaranteed service.
In general resource requirements of a system depend on
the nature and specification of applications. The requests for
computational resources can be of three types [3].

(i) Advance reservation (AR): resources are reserved in
advance for this type of jobs. Resources are expected
to be available at the specified time, when the job
arrives.

(ii) Immediate (IM): when a client submits a request,
based on the resource availability, either the required
resources are provisioned immediately or the request
is rejected.

(iil) Best effort (BE): these jobs, on their arrival, are
provided with the required resources if available;



else these are queued for the fulfillment of their
requirements when the resources would be available.
These can be batch jobs.

Incoming job requests can be categorized into these three
types and scheduling the requests can be prioritized accord-
ingly. Typically, BE jobs are not dead line sensitive requests
and hence these can be queued to utilize underutilized or
idle resources only. This approach will maximize resource
utilization and provide a greater guarantee of servicing of
incoming requests [3]. Job requests are submitted in the form
of virtual machines. Typical attributes of virtual machine
components are the number of cores required, CPU, memory,
and bandwidth of a system needed to execute the job. In
this paper, we propose an efficient scheduling algorithm to
achieve high throughput and greater utilization of resources.
The number of cores and the amount of memory given in the
job request are considered as the capacity requirement of a
VM in the proposed scheduling algorithm and we claim that
other attributes may be easily incorporated in the algorithm.
Many research efforts emphasize the need for exploring
avenues to dynamic resource scheduling approaches in cloud.
We propose a scheduling algorithm based on the earliest
availability of resources with job requirement specification
and a new data structure for monitoring resource availability
efficiently. In the proposed system our contributions are as
follows:

(i) improved cloud architecture with an efficient data
structure for resource monitoring and lookup mech-
anism,

(ii) a new preemption aware scheduling policy based on
the types of jobs where starvation of the preemptable
BE requests is avoided through flag indication,

(iii) an efficient heuristic algorithm with modified best fit
with capacity based scheduling in a datacenter that
maximizes the resource utilization.

The remainder of this paper is organized as follows. We
give a brief related work in Section 2. Next, in Section 3 we
present our system model and Section 4 gives the problem
formulation of the proposed algorithm. Section 5 gives the
evaluation of results and analysis of our work with two
existing works. Section 6 brings the rear with conclusion.

2. Related Work

A significant amount of research is focused on scheduling in
grid environment where the advanced reservation technique
is well studied. Algorithms proposed in [4, 5] discussed
advance reservation and nonpreemptive task scheduling
in a grid environment. Mapping of AR request with the
available resources is proposed in these works. Sulistio et al.
[6] proposed a data structure called GarQ specially for
keeping advanced reservation requests and computing nodes
available which is distributed in different locations as a grid.
In our work, this data structure is explored in order to be used
in cloud with different perspective.

In cloud computing, many works were explored with
the aim of reducing rejection rate of request, maximizing
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profit, and improving the resource utilization. To achieve
these goals, the scheduling algorithms are mainly focused
on the request grouping or resource availability mapping by
applying heuristic techniques. Selvarani and Sadhasivam [7]
proposed an improved cost-based scheduling algorithm for
making efficient mapping of jobs to the available resources
by grouping the jobs based on maximum profitable jobs. The
focus of this algorithm is on provider’s profit rather on user
satisfaction. Li et al. [8] proposed a feedback preemptible task
scheduling algorithm to generate scheduling with the shortest
average execution time of jobs. However the proposed algo-
rithm may lead to starvation since jobs with longer execution
time are kept in the queue.

In [9], Yang et al. presented V-MCT, a V-heuristics for job
allocation, which allocates every job in an arbitrary order of
minimum completion time of the virtualized resource. In this
algorithm, only the completion time of the VM is considered
but not its resource capacity. In this approach, VMs of
different hosts are scheduled which reduces the resource uti-
lization. Ghanbari and Othman [10] presented a priority job
scheduling in cloud computing by using statistical method.
Each job requests a resource with predetermined priority. A
comparison matrix of each job according to resources acces-
sibilities is computed. For each of the comparison matrices,
priority vectors (vector of weights) are computed. Based on
these priority vectors, resources are allocated. This algorithm
has drawback in complexity, consistency, and finish time. A
multiqueue scheduling (MQS) algorithm [11] is proposed to
reduce the cost of both reservation and on-demand plans
using global scheduler. The proposed methodology depicts
the concept of clustering the jobs based on burst time. Jobs are
sorted based on the ascending order of the burst time and are
assigned to three different queues small, medium, and long
based on the burst time of the jobs. Equal weightage is given
to all the queues to schedule the job based on first come first
serve. However, users’ preferences are not considered. Also
an important job with less burst time may be queued for long
time. This may lead to an unpredictable execution time for
user’s request.

Abu Sharkh et al. [12] proposed a scheduling algorithm
for advanced reservation requests where he considered the
available resources and software defined networks (SDN) for
allocation. He proposed a greedy algorithm of allocating start
time first and has shown that the tardiness is minimized by
the proposed algorithm. In their algorithm, they considered
only the public cloud on demand resource pattern and limited
the scheduling to advanced reservation type of request only.
Kaushik et al. [13] proposed a flexible reservation window
scheme. It concludes that when the size of the reservation
window is equal to the average waiting time in the on-
demand AR queue, the reservation rejection rate can be
minimized close to zero. But the work considers only advance
reservation requests and hence does not address the issue of
low resource utilization. All the abovementioned works have
considered only advanced reservation requests but not the
other request types. kurdi et al. [14] proposed an antistarva-
tion algorithm to avoid BE jobs to be queued for long. This
algorithm rejects some of the AR requests to accommodate
BE requests or forcefully converted some AR requests as
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BE request. The main disadvantage of this algorithm is
the absence of mechanisms for user satisfaction. Nathani
et al. [15] proposed a scheduling algorithm that supports
four kinds of resource allocation policies: immediate (IM),
best effort (BE), advanced reservation (AR), and deadline
sensitive (DS). The requests are termed leases. On the arrival
of a request, scheduler tries to schedule the request in a
single slot or multiple slots. If it is not possible, then it tries
to schedule the request by modifying the existing schedule
by using swapping and backfilling (SAB) techniques. In
swapping, two consecutive leases are swapped if and only
if the first lease has requested fewer resources than second
lease and after swapping their deadlines are not missed.
Backfilling procedure is applied to schedule BE and DS leases
by rescheduling them into multiple idle slots. SAB techniques
are applied to push idle resources towards requested time slot
of a new lease. In this method, swapping of BE requests with
DS leads to starvation since there is no indication of how
many times it gets swapped.

Inspired by these works, we consider the job type and
capacity based preemption technique where the starvation of
the BE request is eliminated through the proposed resource
monitoring mechanism. Further, the idle resources are iden-
tified efficiently and scheduled using the proposed scheduling
algorithm to improve resource utilization.

3. Proposed System Model

The following are adaptations/assumptions in the proposed
model.

(1) Jobs are classified into three types as advanced reser-
vation, immediate, and best effort where advanced
reservation and immediate can preempt the best
effort jobs and they are not preemptible.

(2) The best effort jobs are backfilled and maintained
by the Control Management System (CMS) to be
scheduled when the resources are free.

(3) Though the computing resource means core, memory,
and bandwidth, we consider core and memory as
resource capacity with the assumption that the band-
width is more or less the same in private cloud.

In a cloud, the end users service requests are consid-
ered as job and the job is assigned to a virtual machine
(VM). In the proposed model, the hosts are assumed to be
homogeneous physical machines (or servers) that contain the
computational power where the VMs are deployed. Since the
proposed algorithm focuses on the available cores and mem-
ory, adaptation of the proposed model in a heterogeneous
environment is a straight forward task. The architecture of
the proposed cloud model is shown in Figure 1 and notations
used in the system model are described in Notations Section.

The proposed model pivots around a central mechanism
named CMS (Control Management System) and a data-
center that consists of m homogeneous hosts (servers) is
interconnected with the CMS and there may be a total of
J jobs in the system. Typically, CMS is a centralized server
controlling all the hosts present in the datacenter and has

a web portal for job submission, request and service handler,
resource monitor, scheduler, and necessary databases. In the
proposed model, CMS has additional components job type
classifier and modified resource monitoring with specific data
structure which is explained in detail in the next subsection.

Clients submit their jobs to the CMS using the portal
and these incoming jobs are kept in the request queue RQ
maintained by the CMS. We follow the mechanism used in
Amazon EC2 and have VMs with four different sizes, namely,
small, medium, large, and X-large depending on the number
of cores. Each host consists of x number of cores which are
assigned to the VMs based on the VM type. Job requests are
assigned to these VMs and can execute in parallel on a host
with different finish time. For each host, the proposed CMS
maintains a job queue JQ,, where the jobs assigned by the
CMS to that host are queued.

On receiving job request, CMS imposes job type as
advanced reservation, best effort, and immediate garnered
from the information contained in the request. The best-effort
jobs do not have any time constraints, such as start and end
times. Immediate and advance reservations jobs come with
specific time constraints. CMS will preempt the best-effort
job whenever the resources are required for immediate or
advanced reservation job request. Apart from that, CMS is
responsible for scheduling the incoming jobs to the host.
To identify a suitable host, the CMS employs the proposed
modified best fit with capacity based scheduling (MBFCBS)
algorithm discussed in Section 4. The components of the
proposed CMS are described below.

3.1. Client Request Handler. Client request handler presents
a GUI for job submission. It receives the incoming requests
from the user and sends the requests to the job type classifier
to identify the job type.

3.2. Job Type Classifier. Job type classifier in CMS helps to
classify the incoming requests into three different types. Gen-
erally a request consists of a tuple <Num_core, a_Ram, a_D,
BW, Exe_time, and St_time, End_time>, where Num_core is
number of cores required, a_Ram is memory in megabytes,
a_D is disk space in megabytes, BW is the network bandwidth
in megabytes per second, Exe_time is the execution time,
St_time is start time, and End_time is finish time (timestamp
contains date and time). Since these are distinct requirements
of each job, the request tuple can be used to identify the type
of a submitted job as follows.
To identify the type of the job, a request is described as

AR Job request = <Num_core, a_Ram, a_D, BW,
Exe_time, St_time, End_time>

BE Job request = <Num_core, a_Ram, a_D, BW,
Exe_time, Nil, Nil>

IM Job request = <Num_core, a_Ram, a_D, BW,
Exe_time, St_time, Nil>

They are labeled and kept in request list RQ to be
scheduled by the CMS.

3.3. Resource Monitoring. This component monitors and
gathers information of a host such as running job (VM),
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FIGURE 2: Representation of data structure as linked list of a host.

number of executing cores, free core availability, and assigned
AR jobs. This component prepares a resource availability
list (RAL) and a preemption List (PL) from the information
it got from the hosts. Essentially the RAL contains list of
tuples <Host ID, CurrentTime, Free core availability, Free
memory availability, Earliest Core available, Earliest Available
Time (EAT)> and PL contains <Host ID, Job ID, Number of
cores assigned, Time interval, Flag status>. Earliest available
time (EAT) can be calculated using (1) and (3) below. To
prepare the list, the component calculates the EAT of a core
and the number of available cores for a time interval and
updates the list whenever a new job is assigned to a host or
when a job completes releasing resources. We observe that
CMS needs to refer to and use the information about the
available resources from RAL and PL. Hence it is important
that these lists are kept updated. We propose to use an
appropriate data structure using which the two lists can be
updated without delay. The proposed data structure aids in
the search, retrieval, and updating mechanisms that take
place. Figure 2 shows the modified partial data structure as

linked list [16] is used in this research, which accommodates
different job types. We identify the following basic operations
to be performed by the data structure:

(i) search: checking for whether a core is free or available
in a given time interval,

(ii) add: inserting a new reservation request into the data
structure,

(iii) interval search: searching for the next available start
time within a given time interval,

(iv) job search: searching for BE mode job in a host for
preemption within a given time interval.

To achieve the abovementioned characteristics, we pro-
pose to use a grid data structure inspired by GarQ [6], which
is the combination of Calender Q [17] and array for advanced
reservation requests. In order to support different job types
in the proposed system, the data structure has been modified
to consider the job types as a tuple represented as <ST, FT,
ET, NC, RM, JID> where ST is start time, FT is finish time,
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FIGURE 3: Representation of job allocation with time slot.

ET execution time, NC is number of cores requested, RM is
amount of memory required, and JID is job ID in a linked list
as shown in Figure 2.

The proposed data structure has buckets with fixed
smallest slot duration «, as with the calendar queue. Let rv
be a variable which takes the value of number of cores in
use or assigned and rm is the amount of memory allotted
for a job request. Each bucket in the Calender Q contains rv
value, rm value, flag for job type identification, and a sorted
linked list containing the requests in the time bucket as shown
in Figure 3. This approach makes the search operation for
preparing RAL and PL easier since it only searches for a
list inside each bucket. For searching available cores, require
O(k myg,,), where k is the number of requests and myg, is
the number of buckets within a subinterval [16]. The search
operation and the advantages of the data structure are given
in detailin [6]. Flagis setas1ifitisa BE request and as zero for
advanced reservation and immediate requests. In Figure 3,
the BE request assigned is represented as shaded portion. In
order to avoid the starvation of BE job by preempting several
times, it is restricted through the flag. The flag is set to 2 if
the preempted BE job is assigned again to the host when it is
free. The PL is updated if the flag becomes 2 for that jobID,
and then the job will not be taken into consideration for
preemption again. From this detail, the resource monitoring
component finds EAT of a host by calculating the availability
of its cores and finish time from the data structure and
updates the RAL whenever a new job is assigned to it. The
EAT of a host is calculated using (1) and (3).

If the host is not full and some of the cores and memory
are freely available, then they are calculated using (1). Let rA
be free cores available in a host without assigning any job; AT
is available time, and then EAT of a free core is calculated as

EAT (rA,,rM,, AT,)
= ((C, —1v,), (Mem, - rm,, ) (CT (H,))) ®
where t = [1,m],
where rv, is scheduled cores and rm, is the scheduled

memory of host t. CT(H,) is the current time of the host. rv,,
rm, are calculated from the data structure as

rv = ZNC (j;) overatimeslot T and i = [1,]],
)
rm = ZRM (j;) overatimeslot T and i = [1,]].

If none of the cores of a host is available in that time slot,
we need to calculate the availability of a host by considering
each job’s finish time in the job queue of the host for the
specified time interval T. Let a job j; be in tth host with NC
cores, RM memory, start time ST, execution time ET, and
finish time FT in a time interval T, and then

EAT (rA,, tM,, AT,)

= (NC(ji),» RM (j;), » (FT (ji), + ¢))
where t = [1,m], i=[1,]],

3)

where NC(j;), is the number of cores, RM(j;), is the amount
of memory used by the job j;, and FT(j;), is the finish time
of the job where ¢ is a small slack value for delay for next
job to start. Using these equations the RAL is prepared. The
RAL and PL are modeled as indexed B tree with sorted order
[18] which has the search operation in O(logm) which is
an efficient data structure for range queries. The lists are
prepared offline and updated whenever changes occur.

3.4. Scheduler. Scheduler component in CMS finds a suitable
host for an incoming request and assigns the request to that
host for execution. The scheduler gets the RAL and PL from
the database and applies (4) to find the host to assign the job:

EAT (H,) = (avail (rA,), avail (rM,) , min (AT (j;),))

vji(t) € IQt i= [1’]]> t= [1>m]

EAT(H,) is the host with available number of cores and
available amount of memory with the minimum finish time,
so that it can be scheduled next if the capacity requirement of
the incoming job request is satisfied.

3.5. Service Dispatcher. The service dispatcher dispatches the
job request to the corresponding host for execution.

3.6. Information Registry. The incoming requests in RQ, RAL,
and PL are maintained in the database which gets updated
whenever new jobs are assigned to a host.



4, Problem Formulation

The problem of job scheduling in a cloud environment
essentially consists of a dynamic set of J independent job
requests to be scheduled on a set of m computational nodes in
a datacenter. The resources in the cloud system are requested
in terms of VMs which is nothing but the job request. The
resources in the cloud system are utilized in terms of cores in
a host where a host contains several cores, and a hence host
can be utilized by several jobs at the same time. Hence we
argue that assigning multiple jobs (VMs) on the same host is
a bin packing problem [19] and can be represented as integer
linear programming model.

4.1. Mathematical Model. In this paper, we deal with
job scheduling problem of m physical machines. Physical
machine H, can allocate at most # jobs (virtual machines)
at any time. Each user job j; in the system could demand a
service which needs x cores (NC) and y amount memory
(RM) for a VM v;.. All the variables and constants used in
the model are listed for easy reference as follows:

(i) nis the number of VMs in a host utilizing rv cores and
rm memory using (2);

(ii) 1 is the number of hosts/servers in the datacenter;
(iii) X is a binary variable indicating that VM v, is
assigned to a server t;

(iv) Z, is a variable used to indicate whether the server ¢
is used or not.

The proposed job scheduling algorithm is an extended
bin-packing approach with the constraints or inequalities.
The objective is to pack items (VMs) into a set of bins (servers
or host hosting the VMs) characterized by their availability.
At run time, each server t hosting a number of VMs is
characterized by its remaining capacity (free cores and free
memory) and earliest availability of cores and memory if no
cores and memory are available for the next execution. Since
the objective is to pack maximum number of VMs on a host
for executing job requests, the constraints are given as follows.

(1) A VM represents only one job request at a time.

(2) Each server has its capacity limit CPy ;..

(3) Each requested VM is assigned to one server

ixtk =1 Vk=[Ln]. (5)

t=1

(4) At any time, total number of cores and memory
required by the virtual machines in physical machine
(H,) does not exceed its capacity (CPy.;;). Let ¢
denote the capacity (number of cores and memory)
required by a VM and then

n
ZCkth < CPyie Vit = [1,m]
k=1 (6)

where ¢ = (NC (v;) &&RM (v;)) .

The Scientific World Journal

(5) The maximum utilized host is chosen to increase
the resource utilization provided that the requested
capacity is available. H(C,,,,) denotes the host with
maximum capacity utilized.

Job scheduling model can be summarized by the objective
function with all the constraints and conditions as

m
Minimize H = ) H (Cppoy) * Z,» ?)
t=1
n
Subject To chth < CPymit  Vt =[1,m], (8)
k=1
m
YXy=1 Vk=[Ln], €

t=1

1, ifthe server t is used,
Z, = (10)
0, otherwise,

th

1, ifthe VM, placed in Server ¢, (11)

0, otherwise,

H (Cmax)t 2 Ck(i)
(12)
Vvt =[1,m], k=[1n], i=[1,]].

Since the solution to this is NP-complete [20], a greedy set
heuristic algorithm can be used to get the suboptimal solution
to the global optimum. We used the best fit heuristic algo-
rithm with the modification of capacity based scheduling to
optimize the resource utilization by minimizing the number
of host.

4.2. Job Scheduling in Datacenter. The objective of the sched-
uler is to maximize the resource utilization by allocating
earliest available hosts by reducing the number of hosts.
To maximize the resource utilization, we have proposed the
modified best fit with capacity based scheduling (MBFCBS)
algorithm which is shown in Algorithm 1. Since AR/IM jobs
can preempt BE jobs, the only case where an AR/IM job is
rejected is that most of the resources are reserved by some
other AR at the required time, and insufficient resources are
left for this job. If there are n numbers of VMs executing
on a host with different finish time, then a new request is
scheduled on the same host provided that the capacity of the
finishing VM is greater than or equal to the new requested
VM.

The algorithm allocates the VM to a host provided that the
required capacity is satisfied by the available resource capacity
in the host. A host may have multiple BE requests scheduled
in a time interval T. During preemption, a BE request, which
first fits the capacity requirements and satisfies the start time
of the incoming request is chosen for preemption. In order to
avoid multiple preemptions of the same BE job, flag is used
while preempting a BE job request.
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€©)
(4)
(5)
(6)

(8)
)
(10)

Input: Incoming job j in a list RQ, Resource availability list RAL, Preemption list PL.
Output: Job allocation to a host.

(1) For Each incomingjob j; e RQVi=1to]

(2) IF type == BE request THEN

/”*scheduling BE request®/

IF free resource is available in a host at the requested time then allocate the request.
ELSE IF find the H(C, ), with minimum EAT which is not assigned any AR request

Allocate the request.

ELSE put in the backfill queue.
(7) IF type == IM request THEN

/*scheduling IM request™/

IF free resource is available in a host at the requested time then allocate the request.

ELSE IF find the H(C,,,,(;)) with minimum EAT which is not assigned any AR request
IF available resource capacity >= requested capacity && (EAT(v;,) == ST(j;)) THEN

11) Allocate the request.
(12) ELSE call preemption();
(13) IF type == AR request THEN
(14) Pick first host from the list.

17) Allocate the request.
(18) ELSE call preemption();
(19) Else reject the request.

(20) Update the job list RQ

(21) End while

(22) Preemption()

(25) IF type == IM request THEN

(32) End for.

/*scheduling AR request”/

(15) IF available resource capacity >= requested capacity && ST(j;) !< ST(jrassigned), !<
(16) FT(ji;) && (ST(ji) '< FT(japassignea), !< T(j;)) THEN

/*Function call for preemption®/
(23) Getall BE job in the host for the time interval T and check for flag status 1.
(24) For (s = 1 to number of BE jobs in a host)

(26) IF available resource capacity >= requested capacity && (EAT(v,,) == ST(j;)) THEN
(27) Preempt the current BE request and schedule the incoming request on H,

(28) ELSE type == AR request

(29) IF (ST (Jissignea), == ST(j;) && available resource capacity >= requested capacity
(30) v jassigned € IQt THEN

(31) Preempt the current BE request and schedule the incoming request on H,

/*multiple BE jobs in a time slot”/

AvrGoriTHM l: Modified best fit with capacity based scheduling (MBFCBS).

5. Experiments and Evaluation

In this section we present an evaluation for our algorithm
in terms of performance with respect to certain performance
metrics, appropriate workloads, and the simulation environ-
ment. We have used two setups: a small real-time setup
to evaluate the performance of the proposed algorithm in
a real time environment and a simulated setup to check
the performance of the proposed algorithm in a larger
environment.

5.1. Real-Time Experiment Setup. Haizea [21] VM scheduler
is used to evaluate the proposed algorithm in real time in a
small cluster. Haizea’s VM scheduler component is modified
to implement the algorithm. Code is written in python and
run to evaluate our model. We used four physical nodes
each having 4 cores and 1GB memory attached which is
considered as the available resources in provider side. The
experiment is performed by considering four sets of 10, 20,
30, and 40 leases, respectively. Each of the input parameters
in all four sets follows random distribution with the mix of
three types of requests. The submitted number of requests of

different sizes is varied and readings are taken for the number
of requests accepted. The CPU utilization is calculated as the
number of requests allocated and executed on a host to its
total capacity. Haizea allocates requests in the form of leases.
It supports advanced reservation lease. The default algorithm
of Haizea applies greedy method of choosing VM and assigns
the request. The proposed algorithm applies the concepts of
preemption and EAT (VM) which gives more assignment
in addition to the methods used by existing algorithm.
Allocation based on our algorithm resulted in improved
request acceptance rate, reduced resource fragmentation, and
improved system utilization as can be seen by Figures 4 and
5.

From Figures 4 and 5 it can be observed that the number
of requests accepted and utilization increased in case of the
proposed algorithm in comparison to the existing algorithm.

5.2. Simulation Setup. To setup in large scale and evaluate
performance metrics, a simulated environment is used. We
expanded the CloudSim toolkit [22] to simulate the pro-
posed cloud architecture and performed our experiments.
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The CloudSim toolkit supports both the system and behavior
modeling of cloud system components, such as datacenters,
virtual machines, and provisioning policies.

The implementation has been accomplished by modify-
ing the original source code of the simulator that was written
in Java language. We have incorporated the proposed data
structure in the modified simulation environment. Further-
more, RAL and PL are prepared and stored for processing
query using MYSQL extension. The number of AR job and
average duration of AR job highly influences the scheduling
decision which, in turn, affects the successful execution of
the submitted requests [13]. In order to find the percentage of
AR job in our workload, we conducted an experiment where
the percentage of AR request varied to observe the effect of
different percentage of AR jobs in a workload. We have taken
a total of 100 requests, which contains a mix of three types
of requests (AR, IM, and BE) and the success percentage of
these sets is plotted as shown in Figure 6. From Figure 6, we
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FIGURE 6: Evaluation of AR job requests.

TABLE 1: Values assigned in simulation.

Specification Value
Number of hosts 50
Number of cores (PEs) 6

100-1000, mixed equally with all three

Number of requests
1 types of requests and randomly inserted

TABLE 2: Host configuration with VM type.

Host configuration

VM type

MIPS Storage size RAM Bandwidth PEs (cores)
Small 1000 104960 1920 1000 1
Medium 5000 419840 3840 1000 2
Large 10000 870400 7680 1000 4

find that the success rate drastically reduced for IM request
when more AR requests are present in the workload due
to the unavailability of the resource. Hence we consider the
number of AR jobs in our workload submitted list as 20%
for further evaluation of other metrics. We considered the
simulated workload trace given as [23] having AR and BE
mode requests. An additional set of IM jobs are interleaved
in between to generate the mix of the three types of requests
randomly. From that we took 3 sets 0£1000 jobs and evaluated
for result analysis. Values assigned for simulation and host
configuration are given in Tables 1 and 2. These parameters
are kept constant at these values between different runs while
comparing the results.

In order to show the effectiveness of our algorithm, we
have compared the performance of the proposed algorithm
with V-MCT [9] and priority scheduling [10] algorithms.
V-MCT is minimum completion time algorithm without
preemption and priority algorithm is preemptive algorithm.
The same dataset is used to compare the results for all three
algorithms. The compared algorithms methods are given
below.
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In V-MCT algorithm, the estimated total processing time
(ETPT) of a job is calculated and the job is allocated to a
VM which is available, where ETPT of ith job on jth host is
calculated as (12)

w

ETPT [i, j| = ;+ max (CT [i, j]). (13)

i1 % (iew,jey)

ETPT value is the summation of time taken to transfer a job
to a VM which is based on the ratio of the actual file size of
the job, available bandwidth and completion time of a VM on
a host.

In priority algorithm, each job requests a resource with
a determined priority. The priority of each job is compared
with other jobs separately

1
—, i+ f,
pg” s (14)
1, i=f.

In (14), pg denotes a matrix with m rows and m columns. This
matrix is a comparison matrix. For each of the comparison
matrices, there is a need to compute a priority vector (vector
of weights) for scheduling. Using iterative methods, priority
vector (PV) (vector of weights) can be calculated. From that
PV, the maximum element is selected to allocate a suitable
resource.

pg” =

5.3. Performance Metrics. Various performance metrics were
taken into consideration in order to measure and evaluate
the selected job scheduling algorithms. These metrics include
the success rate, resource utilization, makespan, and total
completion time.

Success Rate. The success rate is the ratio of number of jobs
executed successfully to the total number of jobs submitted.

Makespan. The makespan represents the maximum finishing
time among all received jobs per time. This parameter shows
the quality of job assignment to resources from the execution
time perspective

Makespan = Max {FT; | Vj € JQ}, (15)

where FT; = the finishing time of job j. j = job from the list
of jobs.

Resource Utilization U. Let C, 4 be the used host capacity in
terms of cores and C the total number of cores of a host; then

m J . m
U= et (zjzl C](used)t/ et Ct). (16)
m

From Figure 7, it can be observed that our algorithm gives
high success rate to AR request and ensures a guaranteed
service to AR request than IM request. IM requests get
accepted when the resource is available, otherwise rejected.
BE jobs are kept in the queue till execution and utilize the
resources when it is free or idle. Therefore, the success rate
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FIGURE 7: Success rate of proposed algorithm.

of BE jobs is greater than IM request. The other scheduling
metrics are compared and shown in Figures 8-11. From all
the above results, we conclude that MBFCBS has achieved the
highest success rate and utilization in all cases compared to
the other algorithms. This is due to the fact that the MBFCBS
algorithm attempts to select the most suitable VM that can
rapidly respond and execute the given job. We observe from
Figure 11 that makespan time and total completion time of
MBFCBS are higher than that of V-MCT when the number
of jobs increases. This is attributed to the fact that when more
requests are submitted, MBFCBS preempts more BE jobs and
puts these for backfilling later. This increases the average
completion time of the over job requests, which also results in
higher makespan. V-MCT algorithm performed better when
more number of requests arrives compared to the proposed
algorithm since V-MCT does not consider the preemption of
BE jobs and arbitrarily chooses any finishing VM to assign
the job. But V-MCT algorithm delays the other types of jobs
to execute if any batch type of job is assigned on the VM.
Since V-MCT algorithm does not support preemption of job
requests. Hence, the success rate and throughput decrease
which results in more failed job requests.

From the results we observe that the priority algorithm
performs the worst among all algorithms considered with
respect to makespan, success rate, and utilization. This is
because the priority algorithm attempts to pick a host from
a computed available vector list of hosts. For each job
it computes a priority vector where less priority jobs are
preempted. This leads to the starvation and failure of jobs
having less priority. Also, computing priority and accessibility
vectors take time, which further contribute to the increased
makespan. MBFCBS shows improvement over the other two
algorithms in terms of success rate and resource utilization
since it takes the advantage of preemption and earliest
available resources to achieve better results. The preemption
of the job is also reduced through the flag to avoid starvation
and due to the type classification of requests, these preempted
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FIGURE 8: Success rate of scheduling algorithms.
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jobs can be executed till the resource is free or reserved for
advanced reservation. In that way, the resources are effectively
utilized to the maximum which give higher utilization than
the other two algorithms.

6. Conclusion

In this paper, we present cloud scheduling using proposed
MBFCBS algorithm. This paper explored the problem of job
(VM) placement in cloud providers’ datacenter. Our original
contribution consists of MBFCBS algorithm for scheduling
that maximizes the resource utilization and improved success
rate with the usage of an efficient data structure for resource
monitoring and lookup mechanism. We investigated preemp-
tion as a way to increase resource utilization in datacenters,
where some requests have preemptive priority over the
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others. Our proposed algorithm is based on linear integer
programming model. Extensive experimentations brought
forward promising results about the performance of the
proposed algorithm along with the data structure in a cloud
datacenter environment. Further investigation could be in
the direction of the utility of this algorithm in other cloud
scenarios such as including deadline sensitive request type
and in a federated cloud.

Notations Used in the System

RQ: Incoming request queue in CMS
JQ;: Job queue length of a host ¢
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H: Host (server) in a datacenter

Cy: Total number of cores in a host

NC(j;): Number of cores required by a job request
(VM specification)

Mem,: Total memory of a host

RM(j;): Required memory of a request

CP,:  Capacity of a host in terms of total number
of cores and total memory

CPimit: Maximum capacity limit of a host to have n
number of VMs at a time.
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