
www.ietdl.org
Published in IET Software
Received on 22nd June 2011
Revised on 14th August 2011
doi: 10.1049/iet-sen.2011.0110

ISSN 1751-8806

Agile software development methodology for
medium and large projects
M. Rizwan Jameel Qureshi
Faculty of Computing and Information Technology, King Abdul Aziz University, P.O. Box 80221, Jeddah 21589,
Kingdom of Saudi Arabia
E-mail: anriz@hotmail.com

Abstract: Extreme programming (XP) is one of the most widely used agile methodologies for software development. It intends to
improve software quality and responsiveness to changing customer requirements. Despite the facts that the use of XP offers a
number of benefits and it has been a widely used agile methodology, XP does not offer the same benefits when it comes to
medium and large software projects. Some of the reasons for this are weak documentation, lack of strong architecture and
ignorance to risk awareness during the software development. Owing to the ever-increasing demand of agile approaches, this
study addresses the problem of XP’s ability to handle medium and large projects. Most of the companies that employ XP as a
development methodology for medium and large projects face this problem, which echoes the importance of this problem. To
address this problem, in this study XP model is extended in such a way that it equally offers its benefits for medium- and
large-scale projects. As an evaluation of the extended XP, three independent industrial case studies are conducted. The case
studies are described and results are presented in the study. The results provide evidence that the extended XP can be
beneficial for medium and large software development projects.
1 Introduction

Agile methods for software developed emerged in the mid-
1990s [1, 2] and focus on agility for software development.
In essence, agility means responding to changes quickly
and efficiently. Possible changes required in software
projects are in budget, schedule, resources, technology,
requirements and team. These are the ‘reacting’ changes on
which agile models focus by delivering first increment in a
couple of weeks and complete software in couple of
months. Twelve golden principles have been defined in an
agile alliance meeting conducted in 2001 [1]. These
principles provide support for development of only small
software projects having small teams [3]. However, there is
no guidance about how to customise agile process models
for the development of medium and large software projects
[4–6]. There are several criteria to classify projects such as
size, complexity and mission criticality [7].

Generally, a software project is considered ‘small’ if line of
code (LOC) of the project is between 10 000 and 40 000,
‘medium’ if LOC is between 40 000 and 100 000 and
‘large’ if LOC are typically over 100 000. In addition to
this, ‘size’ of a project can also be measured in terms of
human effort (e.g. number of person-months applied) [7].
This paper measures ‘size’ in terms of LOC to classify the
projects as small, medium and large.

Key benefits of agile models are fast development and cost
reduction. Fast development in some cases leads to poor
software (SW) quality and carrying all disadvantages
of rapid application development (RAD) and prototype
358

& The Institution of Engineering and Technology 2012
models, such as weak documentation, difficult to upgrade,
lack of reuse and excessive maintenance [8]. Extreme
programming (XP) is a widely used among all agile
models. A number of studies have been reported about
effective implementation of XP for small projects [9, 10].
XP was proposed based on ideas and practices from
previously proposed process models to achieve advantages
such as time saving, cost reduction, refactoring and
suitability for small projects with small teams [7, 11]. An
example is the refactoring technique which improves a
software quality in terms of design and code throughout
software development. However, some drawbacks of XP
that can be found in the literature are inappropriate for
safety critical projects, limited support for outsourcing,
inadequate assistance for distributed development
environment, weak documentation and unsuitable for
medium and large projects [12–14].

Medium and large projects have some characteristics
similar to small projects such as time constraints, changing
business situations and vague requirements [12]. Software
industry has to bear an immense amount of stress to deliver
products timely without sacrificing quality. Traditional
methodologies are not fulfilling the need of software
industry to achieve fast development without compromising
quality whereas agile methodologies cannot be directly
implemented for medium and large development projects
because of inadequate documentation, weak architecture
and lack of risk management. Therefore there is a need to
adapt the agile methodologies for medium and large
projects to achieve fast development with high quality to
IET Softw., 2012, Vol. 6, Iss. 4, pp. 358–363
doi: 10.1049/iet-sen.2011.0110



www.ietdl.org
handle software industrial problem. This paper focuses on
extending XP model for medium and large projects in order
to meet the industrial demand of an agile methodology.

The rest of the paper is organised as follows: Section 2
covers related work. Section 3 describes the research
problem. Section 4 provides motivation for the new
improved agile XP model to be proposed. An extended XP
model is proposed in Section 5. Section 6 presents
validation of the proposed extended XP model using three
case studies.

2 Related work

A number of case studies have been reported for the success
of agile process models for the development of small-scale
projects [15–17]. Two of the case studies in these projects
were reported to be completed in 3 months and remaining
one was reported to be completed in 2 months. These
projects used qualitative and quantitative techniques to
estimate and analyse the results. The findings of the case
studies are as follows.

† Agile teams are supposed to monitor team performance
and SW development procedures continuously for efficiency.
† Defect rates and team’s overall productivity are improved
by following agile practices.

These case studies are conducted to adapt agile process
model for 2–3 months projects according to agile principles
[15–17]. These projects do not provide any information
about adaptation of agile XP model for medium and large
projects (greater than 100 000 LOC).

Pekka et al. intended to classify, examine and formulate
meaning in the scattered area of agile software development
process models [18]. A comparative analysis was presented
using the method’s life-cycle reporting, project management
assistance, type of practical guidance, fitness-for-use and
empirical evidence as the analytical parameters. Pekka et al.
concluded that agile models dealt with all main phases of
system development life cycle (SDLC) but there were
limited support for project management [18].

Cao in [19] works out a complete scene of agile
development in order to improve the knowledge of software
development community and to foretell about the agile
process. The objective is to model the dynamics of agile
software development process and explore the
implementation and usefulness of agile methods [11].
Another purpose is to investigate the influence of agile
process models on functioning of software such as quality,
schedule, cost and customer’s satisfaction [19].

Various attempts have been made from last many years to
improve agile models [20, 21]. Jachi et al. [22] proposed a
modified XP agile process model for developing diagnostic
knowledge system and its main phases were system
metaphor, planning, implementation and integration. The
proposed model was a hybrid approach consisting of
process model to develop expert systems (ESs) and XP
model. The objective is to initiate agility in expert systems.
As the diagnostic knowledge system is in its early stages of
development, it is too difficult that this model will meet its
objectives to develop large projects [22].

Lucas et al. [23, 24] presented two case studies using
adapted XP model. One case study was conducted with
IBM for 12 months and other one was conducted with
Sabre Airline Solutions for 3 months. Lucas et al. [23, 24]
proposed an extreme programming evaluation framework
IET Softw., 2012, Vol. 6, Iss. 4, pp. 358–363
doi: 10.1049/iet-sen.2011.0110
(XP-EF) to adapt XP model. The framework used feedback
loop throughout the project for the evaluation of agile team
and procedures involved. Framework needs further
validation through more case studies and needs to be
improved particularly with respect to the XP adherence
metrics. The teams in both case studies were typically agile
and had management support to deploy XP process model.
Hence, the success stories of both teams cannot be taken as
an example to fit for non-agile, large and distributed teams
and for the teams have limited management support for the
deployment of agile models.

2.1 Weaknesses of the XP model for the
development of medium and large projects

Cao et al. [12] have argued that XP cannot be used for
medium and large projects because of inadequate
architectural planning, over-focusing on early results, weak
documentation and low levels of test coverage. The XP
approach emphases on coding/development and operational
software instead of comprehensive documentation/
architecture design. It supports to do additional effort to
throw architectural features that do not assist current
increment [13]. This practice delivers the desired results for
small projects but throws important architectural features for
medium and large projects where cost and effort of a
change in the architectural design is very high [14].

3 Research problem

A number of facts have been put forward from a variety of
industrial domains in support of agile software development
methodologies. However, most of them come from small
projects using controlled studies [15–17]. So, there is a
need for extending/revising XP in order to acquire the
benefits (offered to small projects) for medium and large
projects in an industrial context. The research question
therefore becomes:

How to adapt XP for the development of medium and
large projects?

4 Motivation for the proposed extended
XP process model

Classical XP methodology is not applicable to medium- and
large-scale software development projects. This motivates
three changes, including ‘Project Planning’ phase, ‘Analysis
and Risk Management’ phase and merging ‘Design’ and
‘Development’ phases of existing XP process model. These
changes also offer some additional improvement as a
byproduct of the to-be-proposed model that is besides wider
scope of the output, the quality of the proposed extended
XP model will be significantly improved than the existing
one because of risk awareness, better documentation, stable
requirements and strong architecture. It can also be
advocated that better documentation further helps a software
engineering team to evolve and reengineer software owing
to strong architectural design. The inclusion of ‘Project
Planning’ phase, ‘Analysis and Risk Management’ phase
and merger of ‘Design’ and ‘Development’ phases are
likely to enable the proposed extended XP to be applicable
to medium and large software projects.
359

& The Institution of Engineering and Technology 2012



www.ietdl.org
5 Proposed agile methodology for medium
and large projects

In this section, the proposed XP methodology is presented. It
is an extended form of the classical XP methodology that is
expected to be equally suitable for small, medium and large
software projects unlike the existing XP model that is
meant for only small projects. The main phases of classical
XP are planning, design, coding and testing [7], whereas
the main phases of the extended XP methodology (our
proposed) are ‘Project Planning’, ‘Analysis and Risk
Management’, ‘Design and Development’ and ‘Testing’.
The Testing phase of the extended XP model is executed in
the same manner as of the existing XP model. Fig. 1 shows
the proposed extended XP model.

The extended XP model is multidimensional in nature and
it is equally suitable for incremental (like existing XP) and
parallel development (like traditional process models). The
proposed model supports the development of medium and
large software projects. A detailed description of the phases
of the extended XP model is as follows.

5.1 ‘Project Planning’ phase

The first phase of existing XP is the ‘Planning’. Its main
elements are gathering user stories, communication
feedback loop, story estimations, acceptance test criteria and
iteration plan [7]. These activities are not enough to
develop a medium- to large-scale project because more
emphasis is laid on the process rather than production of a
solid document that can become a foundation for the entire
project. The information about the project is heavily relied
on the project team members. Project planning is one of the
project drivers and it provides a systematic or pragmatic
approach to direct and complete a project. Project planning
plays an important role for the success or failure of a
project. A software project will deteriorate after few years if
the project planning is not properly made and documented
[7].

Therefore the ‘Planning’ phase of existing XP is replaced
by the ‘Project Planning’ phase in the proposed extended
XP model by keeping in mind the demands of medium and
large projects. Hoffer et al. [8] described that project plans
for medium and large projects can be hundred pages in
length therefore types of activities can be performed must
include the defining the project scope and its alternatives,
feasibility assessments, dividing the project into manageable
tasks, estimating resources, developing a schedule,
identifying major risks and its assessments and use case
modelling. The objective of ‘Project Planning’ phase is to
concentrate on the major milestones of project instead of
micro-milestones.

Fig. 1 Proposed extended XP process model
360

& The Institution of Engineering and Technology 2012
5.2 ‘Analysis and Risk Management’ phase

The existing XP model gathers the requirement/stories during
the ‘Planning’ phase using an index card. It does not have
any architectural design except the metaphor (i.e. an abstract
design). According to Cao et al. [12], ‘XP de-emphasizes up
front design because it is claimed that everything is
changing. Instead, a “metaphor” is used to describe the basic
elements and relationships of the application’. XP approach
gives more consideration to operational software than
comprehensive consideration [13]. XP throws away valuable
architectural support of the previous increments if it is not
relevant to the new increment that is essential while dealing
with medium and large projects. XP works well for small
projects having few stories to be implemented within few
weeks. Analysis phase improves quality of software through
proper documentation. ‘Analysis and Risk Management’
phase in the proposed XP model has many benefits for
example, stable requirements, strong architecture and risk
management plan. Stable requirements facilitate a
development team to achieve strong architectural design by
aiding the factor of reuse and easy to evolve a software. Risk
management plan helps a team to cater potential risks
regarding the failure of a project. It has been reported that a
large number of projects failed because of lack of risk
management when XP was initially used in projects [25].

This is the phase where an analyst gathers detailed
requirements/user stories. Analysis phase results in more
comprehensive user requirements/user stories and strong
architecture. Strong architecture means a flexible architecture
that allows using design patterns. Design pattern decreases
the time and cost for the implementation of new
requirements/user stories in contrast to write them from the
scratch. The client is requested to prioritise the user stories
on his need basis and provides an index value similar to
existing XP model. High index value indicates high priority.
Client can: (i) change the order of user stories at any time
and (ii) provide new user stories at any time. Planning poker
technique is implemented to achieve a manageable value (in
development weeks) of user stories to be completed in a
release. Modelling of the user stories is kept simple to avoid
complicacies for the software engineering team. Project
velocity is measured after successful deployment of first
release and then in all subsequent releases throughout the
development of project. The objective is to adjust the
delivery dates of remaining user stories to be developed.

5.3 Design and Development phase

Design and coding phases of existing XP model are merged to
incorporate agility in the new adaptive XP process model. XP
design produces only metaphor and spike solution. Spike
solution is an operational prototype. The proposed XP
process model uses prototype/demos cycles to verify the
design and user stories. Software is developed in small
releases/increments as the customer approves prototypes.
Merging of design and development phases also improves
efficiency of software development. Refactoring technique
is implemented during designing and coding of a release.
Interface specification document is designed for the user
stories to be developed in first release. The task of coding is
assigned to programmers following pair programming.
Interface specification document of user stories of the
second release is designed simultaneously by the time
programmers coded the user stories of first release. This
process of designing and coding is cyclic for the remaining
IET Softw., 2012, Vol. 6, Iss. 4, pp. 358–363
doi: 10.1049/iet-sen.2011.0110



www.ietdl.org
releases till the whole software is developed. The
programmers continuously integrate the code as they
complete it for a particular release.

5.4 Testing phase

Test cases are prepared for before coding of a release
following test-driven development (TDD) environment.
Each release is tested on unit basis. Integration test is then
conducted to check integration among modules. System test
is the next phase to validate the whole increment as one
unit. Acceptance testing is the last test to verify a release
from the customer. Tested release is maintained and
deployed. Testing cycle and learning and post learning
cycles of the software development team are continued
throughout the software development. The main objective
of cyclic strategy is to improve and change the development
activities by the reorganisation of extra actions required
during the research. The proposed extended XP process
model is cyclic and evolutionary till software development
is completed. Main activities of deployment are installation,
training and security.

6 Evaluation of the proposed extended
XP model

As presented in the preceding section, XP is adjusted to make
it equally beneficial for all three types (small, medium and
large) projects. In order to evaluate the usefulness of the
proposed methodology, case study is used as a research
method. Three case studies were conducted for small,
medium and large projects to evaluate the proposed XP
(one for each).

6.1 Three case studies

The case studies are based on three projects of three
independent software companies who volunteered for
participation. An intensive 2-week training was arranged for
all teams involved in the case studies. The aim of the
training was to present the concepts of our proposed
methodology and explain the XP practices and strategy to
implement the extended XP model for small, medium and
large projects. The main practices of XP were explained
include planning poker technique, small releases, simple
design, test-driven development environment, refactoring,
pair programming, collective code ownership, continuous
integration, onsite customer and coding standards [26]. The
training also covered development and technical
environment of the case studies/projects.

From a study of existing approach [15, 17, 23], the author
observes that two to six releases are considered sufficient for
presenting results and claiming some findings. In line with
that, in this study the author deemed it appropriate to
IET Softw., 2012, Vol. 6, Iss. 4, pp. 358–363
doi: 10.1049/iet-sen.2011.0110
conclude the results of case study based on first four
releases of the three case studies. Specifications of case
studies conducted for evaluation of the proposed artefact are
shown in Table 1 (as cases 1–3, respectively). This is
followed by a detailed design and description of each case
study.

6.1.1 Case study 1: Case study 1 is a small project
conducted for a software company to develop a logistic
information system (LIS) for an invoice management
company dealing in USA on the premises of software
company. The software company is working with two
offices that are situated at Pakistan and USA. The software
company was dealing in office management systems since
2002 and its main product was Recruitment Management
System. The average duration to complete previously
completed projects was 1 year. The software company was
using rational unified process (RUP) model to develop
software previously. The software company had no
experience of working with XP process and its practices.

A team of 12 members was selected for this pilot project
from the software company from 20 employees. Team
formation was suggested by the author to implement new
adaptive XP model for small-scale projects in a distributed
development environment. The criteria for the selection of
team were qualification and experience of object-oriented
analysis and design. The experience level of team members
was ranging from 1 to 8 years in software industry. Project
manager had high experience of 8 years in software
industry. Team had high experience of ASP.NET tool with
a medium to high experience of the domain. Only those
programmers were selected for this project which had
database development experience.

6.1.2 Case study 2: Case study 2 is a medium project
performed for a software company to develop an academy
management system for an army cadet college on the
premises of Software Company at Pakistan. The software
company offices are located at five countries Pakistan, UK,
Australia, China and USA. Case study 2 has been
completed for a software company that is dealing
internationally. The software company has been dealing in
financial software solutions since 1995 and well
experienced in developing software projects. Case study 2
was the first development experience of the software
company using existing agile XP process and practices. The
company was using formerly RUP model to develop
software. Estimated schedule for completion of whole
project was 18 months. Project is broken down into
modules based on initial communication with the army
officials. The main modules of ERP project are mess, army
cadets training and academics.

A team of 15 members was selected for this project from
the software company from 200 employees. Team
Table 1 Criteria for the conduction of three case studies

Criteria Case 1 Case 2 Case 3

team size 12 15 20

project size small medium large

nature of project logistic system academic system property estate business system

experience of object oriented development high high high

no of releases compared 4 4 4

size, KLOC 8 47 63
361

& The Institution of Engineering and Technology 2012



www.ietdl.org
formation was suggested by the author to implement new
adaptive XP model for medium-scale projects. The criteria
for the selection of team were qualification and experience
of object-oriented analysis and design. The experience level
of team members was ranging from 3 to 10 years in
software industry. Project manager had high experience of 8
years in software industry. Domain expertise of the team
was low owing to specific nature of ERP applications for
army. The team members are located at one site on the
premises of the software company at Pakistani office. Two
weeks deadline was decided to analyse, design, code, test
and deploy a release and all subsequent releases. Product
specialist approved the release before beta testing. The
client provided feedback within 3 days of third week. The
project team changed the release as per needs of client
within third week. The postmortem analysis was performed
before starting work on the next release.

6.1.3 Case study 3: This case study is a large project
conducted for a software company that has two offices; one
is located at Pakistan and second is located at USA. The
case study is to develop software for a leading company of
USA dealing in property estate business on the premises of
the software company at both offices. There was no
experience of the software company in developing projects.
Case study 3 was the first development experience of the
software company. Six years were estimated for completion
of this project namely GREAT.

Four teams were hired for this large project by the software
company to implement the extended XP model in a
distributed development environment. This team formation
was suggested by the researcher for the adaptation of XP
model for large-scale projects. The criteria to select the
teams for this project were qualification and experience of
object-oriented analysis and design. The domain expertise
of the team was medium to high and language expertise
was high. Minimum experience of a team member was 3
years in software industry was a criterion for selection. The
project manager had 10 years of experience in software
industry. Each team consisted of two product specialists
(each product specialist handles two teams) and one project
manager (shared among four teams). Each team would be
working on a particular release, meaning four releases
would be designed, developed, tested and deployed at the
same time.

The project was broken down into several sub-projects.
Each sub-project was a complete project itself ranging from
1 5, 4 and 6 months. Product specialists and project
manager decided that each project would be divided into
releases. Each release was an increment based on the
number of stories completed in it. Product specialist
approved the release before deployment.

6.2 Results of three case studies (cases 1–3)

The extended XP model is validated using three case studies.
The results are concluded based on the postmortem analysis
and number of defects reported of the three case studies.
The time (in hours) and effort (in %), spent per release to
conduct postmortem analysis of the three case studies, are
shown in Tables 2 and 3.

Many (existing) XP case studies reported that a minimum
time of postmortem analysis was between 2 and 4 h and the
effort consumption was around 4.7% on lightweight
postmortem reviews [15, 27, 28]. In the three case study
projects in Table 2, the average time is 1.6 h in Case 1,
362

& The Institution of Engineering and Technology 2012
2.8 h in Case 2 and 3.7 h in Case 3. In Table 3, the average
effort is 4% in Case 1, 7% in Case 2 and 9% in Case
3. The extended XP model shows its adaptation for Case 2/
medium and Case 3/large projects by completing the
postmortem analysis within the minimum duration as
prescribed by the existing XP for small [15, 27, 28]. There
is another evidence of improvement in quality of the
extended XP as the effort in Case 1/small project is 4% that
is less than 4.7% of the recommended effort of existing XP
for small projects.

Tables 2 and 3 show that there is an average increase in
time and effort from Case 1 (small) to Case 2 (medium) and
Case 3 (large-scale) projects because of increase in the size
of the releases that is 8 kilo line of code (KLOC) in Case 1,
47 KLOC in Case 2 and 63 KLOC in Case 3. It can also be
observed from Tables 2 and 3 that there is gradual decrease
of time and effort from release to release in the three
projects. The main reason, to decrease the time and effort
from release to release, is because of the learning of the
researcher and teams about the experiences of postmortem
analysis as they progressed from release to release.

In Table 4, the three extended XP projects are compared
with an existing XP project by taking the relative ratios
of quality assurance (QA) to prove the point that quality
of extended XP projects is better or less than quality of
existing XP model. Sajid and Jongmoon [29] described that
it is possible to compare the projects by taking the relative
ratios for QA to provide evidence of quality. Fault rate per
KLOC (the four releases) for ‘analysis and risk
management’, ‘design and development’ and testing as a
complete for each release of Case study 1, Case study 2 and
Case study 3 so to calculate the average rate. This is
accomplished by comparing the fault rate per KLOC for the

Table 3 Effort of postmortem analysis

Releases Effort, %

Case 1 Case 2 Case 3

1 5.67 11.35 15.56

2 3.67 8.49 8.65

3 3.63 4.83 6.44

4 3.36 3.5 5.9

average 4 7 9

Table 2 Time of postmortem analysis

Releases Time, h

Case 1 Case 2 Case 3

1 2.77 3.18 4.36

2 1.75 3.35 3.70

3 1.05 2.63 3.25

4 0.95 2.13 3.5

average 1.6 2.8 3.7

Table 4 Fault rate/KLOC

1 2 3 4 Average

Case 1 2.84 2.44 2.41 1.97 2.41

Case 2 3.64 3.36 3.22 2.16 3.09

Case 3 4.06 3.93 3.85 3.04 3.72

existing XP case study [30] 2.19 2.10 2.04 8.70 3.75
IET Softw., 2012, Vol. 6, Iss. 4, pp. 358–363
doi: 10.1049/iet-sen.2011.0110



www.ietdl.org
four releases of three case studies with four releases of a case
study of the existing XP model in Table 4. The details about
the existing XP case study can be found in [30]. The average
rate shows a gradual increase in fault rate/KLOC as the size of
the project increases for the three case studies.

In the three case studies the average rate for fault rate per
KLOC is 2.41 in Case 1, 3.09 in Case 2 and 3.72 in Case 3
whereas it is 3.75 fault rate per KLOC in an existing XP
case study. The average fault rate/KLOC for the three case
studies is less than what is addressed by existing XP model
indicating that quality of the extended XP model is better
than the existing XP. The improvement in quality of the
extended XP model is because of the proposed changes in
the life cycle phases incorporated into existing XP model
justifying its proposal.

7 Conclusions and future work

The agile models are a desirable replacement of traditional
heavyweight models for the software development
companies at the current time. XP is most widely used,
documented and accepted model among all agile models. It
was proposed for simple and small-scale projects. Software
industry has to deal with medium and large projects as well.
XP model has many success stories and there is a need for
its modification for medium and large projects. Many efforts
are made to extend existing XP model but still detailed
methods are required in support of XP model to select, tailor
and deploy it to meet the requirements of software industry.
In this paper an extended XP model is proposed to address
the limitations of classical XP methodology that is suitability
of medium and large projects. Suitability of the proposed
extended XP model is evaluated by small, medium and large
projects by applying it to the three separate case studies (one
for each). Empirical data are gathered using participant
observation and direct observation based on the four releases
of the three case studies.

The results are concluded mainly based on the postmortem
analysis and fault rate per KLOC. The extended XP model
indicates its adaptation for medium and large projects by
completing the postmortem analysis within the 2–4 h (as
recommended for small projects). An average increase in
time and effort for the postmortem analysis is noticed
because of increase in KLOC of projects whereas there is
an average decrease in time and effort from release to
release owing to learning of the author and development
teams. The extended XP projects are compared with an
existing XP project by taking the relative rations of QA to
prove the point of quality that extended XP model is better,
equal or less than the existing XP model. It is observed that
quality of the extended XP model is better than the existing
XP model because of less number of fault rate per KLOC
for the three case studies. From the evaluation, the author
has found evidences that the proposal of extended XP
model is suitable for development of medium and large
projects. However, the need for the statistical validation of
extended XP model proposal will be addressed in days to
come by comparing with future releases/versions.

8 References

1 Stapleton, J.: ‘DSDM: business focused development’ (Addison
Wesley, London, 2003)
IET Softw., 2012, Vol. 6, Iss. 4, pp. 358–363
doi: 10.1049/iet-sen.2011.0110
2 Highsmith, J.: ‘Adaptive software development: a collaborative
approach to managing complex systems’ (Dorset House Publishing,
New York, 2000)

3 Williams, L., Cockburn, A.: ‘Agile software development: it’s about
feedback and change’, Computer, 2003, 36, (6), pp. 39–43

4 Boehm, B., Turner, R.: ‘Management challenges to implementing agile
processes in traditional development organizations’, IEEE Softw., 2005,
22, (5), pp. 30–39

5 Eckstein, J.: ‘Agile software development in large-diving into the deep’
(Dorset House Publishing, New York, 2004)

6 Lindvall, M., Muthig, D., Dagnino, A., et al.: ‘Agile software
development in large organizations’, IEEE Comput., 2004, 37, (12),
pp. 26–34

7 Pressman, R.S.: ‘Software engineering’ (McGraw Hill, 2009)
8 Hoffer, J.A., George, J.F., Valacich, J.S.: ‘Modern system analysis &

design’ (Pearson Education, 2002)
9 Murru, O., Deias, R., Mugheddu, G.: ‘Assessing XP at a European

internet company’, IEEE Softw., 2003, 20, (3), pp. 37–43
10 Rumpe, B., Schroder, A.: ‘Quantitative survey on extreme programming

projects’. Proc. Third Int. Conf. on Extreme Programming and Flexible
Processes in Software Engineering (XP2002), Alghero, Italy, May 2002,
pp. 95–100

11 Beck, K.: ‘Embracing change with extreme programming’, IEEE
Comput., 1999, 32, (10), pp. 70–77

12 Cao, L., Mohan, K., Peng, X., Ramesh, B.: ‘How extreme does extreme
programming have to be adapting XP practices to large scale projects’.
Proc. 37th Annual Hawaii Int. Conf. on System Sciences, Hawaii, 2004,
p. 30083c

13 Boehm, B.: ‘Get ready for Agile methods with care’, Computer, 2002,
35, (1), pp. 64–69

14 Turk, D.E., France, R.B., Rumpe, B.: ‘Assumptions underlying agile
software-development processes’, J. Database Manage., 2005, 16, (4),
pp. 62–87

15 Outi, S.: ‘Improving software process in agile software development
projects: results from two XP case studies’. Proc. 30th EUROMICRO
Conf., France, 2004, pp. 310–317

16 Outi, S., Kari, K., Pekka, K., Jani, L., Sanna, S., Abrahamsson, P.:
‘Self-adaptability of agile software processes: a case study on post-
iteration workshops’. Proc. Fifth Int. Conf. on Extreme Programming
and Agile Processes in Software Engineering, Germany, 2004,
pp. 184–193

17 Outi, S., Minna, P., Jari, S.: ‘Deploying agile practices in organizations:
a case study’. Proc. European Conf. on Software Process Improvement
(EuroSPI 2005), Hungary, 2005, pp. 16–27

18 Abrahamsson, P., Juhani, W., Mikko, T.S., Jussi, R.: ‘New directions on
agile methods: a comparative analysis’. Proc. 25th Int. Conf. on
Software Engineering, Portland, OR, 2003, pp. 244–254

19 Cao, L.: ‘Modeling dynamics of agile software development’. Companion
to the 19th Annual ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Vancouver, BC, Canada, 2004, pp. 46–47

20 Schwaber, K.: ‘Agile project management with scrum’ (Microsoft Press,
2004)

21 Schwaber, K., Beedle, M.: ‘Agile software development with scrum’
(Prentice Hall, 2002)

22 Jachi, B., Frank, P., Dietmar, S.: ‘An agile process for developing
diagnostic knowledge systems’, KI J., 2004, 18, (3), pp. 12–16

23 Lucas, L., Laurie, W., William, K., Annie, I.A.: ‘Toward a framework
for evaluating extreme programming’. Proc. Eighth Int. Conf. on
Empirical Assessment in Software Engineering, Edinburgh, Scotland,
2004, pp. 11–20

24 Lucas, L., Laurie, W., Lynn, C.: ‘Motivations and measurements in an
agile case study’, J. Syst. Archit., 2006, 52, (11), pp. 654–667

25 Beck, K.: ‘Extreme programming explained: embrace change’ (Addison
Wesley, 2000)

26 Kuppuswami, S., Vivekanandan, K., Ramaswamy, P., Rodrigues, P.:
‘The effects of individual XP practices on software development
effort’, ACM SIGSOFT Softw. Eng. Notes, 2003, 28, (6), pp. 1–6

27 Dingsøyr, T., Hanssen, G.K.: ‘Extending Agile methods: postmortem
reviews as extended feedback’. Fourth Int. Workshop on Learning
Software Organizations, Chicago, Illinois, USA, 2002, pp. 4–12

28 Cockburn, A.: ‘Agile software development’ (Addison-Wesley, Boston,
2002)

29 Sajid, I.H., Jongmoon, B.: ‘Software quality assurance in XP and spiral –
a comparative study’. Proc. Fifth Int. Conf. Computational Science and
its Applications, Malaysia, 2007, pp. 367–374

30 Abrahamsson, P., Juha, K.: ‘Extreme programming: a survey of
empirical data from a controlled case study’. Proc. Int. Symp. on
Empirical Software Engineering, USA, 2004, pp. 73–82
363

& The Institution of Engineering and Technology 2012


