15.1 Introduction

The idea of ensemble modeling is to create and combine multiple inductive models for the
same domain, possibly obtaining better prediction quality than most or all of them. For this
improvement to be possible, the strengths of individual models should be retained or rein-
forced and their weaknesses should be canceled out or reduced. It turns out that dozens or hun-
dreds of models, even of rather mediocre quality, may produce top-notch predictions as a team.

Ensemble modeling is applicable to the two major predictive modeling tasks, classifica-
tion and regression. In each case, it may yield substantial improvement over single models
at the cost of investing considerably more computation time for multiple model creation and
loosing overall human readability, even if each individual model is perfectly human readable.
To exploit this potential for better predictive power, appropriate techniques for base model
generation and aggregation are required, the most common of which will be discussed in this
chapter. The former are mostly task independent and the task-specific aspects of the latter are
sufficiently simple and isolated to make most of this discussion applicable both to the classi-
fication and regression tasks. It is the former, though, where model ensembles are most often
and most successfully used, and some ensemble modeling techniques developed specifically
for classification will also be discussed.

Example 15.1.1 Ensemble modeling techniques presented in this chapter will be illustrated
with simple R code examples. They will use the HouseVotes84 and Boston Housing datasets
from the m1bench package, for the classification task and regression task, respectively. The
decision tree and naive Bayes algorithms will be used for classification base model creation,
with their R implementations provided by the rpart and e1071 packages. The regression
tree and linear regression algorithms will be used for regression base model creation, with
their R implementations provided again by the rpart package and the 1m function from
the standard stats package. Several DMR packages, containing functions defined in other
chapters and simple utilities, will also be used. The following R code sets up the environ-
ment for these demonstrations by loading the packages and the datasets. The latter are then
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randomly partitioned into training and test subsets, to apply a manually performed hold-out
evaluation procedure. A fixed initial seed of the random number generator is used to make the
results strictly reproducible. Single models are created based on the training subsets, using
the decision tree, naive Bayes, regression tree, and linear regression algorithms, the same
that will be subsequently used to create base models for ensembles. These will serve for the
comparison of misclassification error and mean square error levels possible to

achieve. The two quality indicators are calculated using the err function,

defined in Example 7.2.1, and the mse function, defined in Example 10.2.3.

15.2 Model committees

The expectation of model ensembles to improve over individual models is sometimes
explained by the common-sense idea of a committee consisting of multiple “experts,”
making better decisions collectively than individually. For this justification to remain valid,
all of these “experts” must possess at least some reasonable level of competences and — at
the same time — exhibit sufficiently diverse opinions to make their collective behavior
different from that each of them would exhibit alone. Applying this metaphor to predictive
modeling, we would expect combined models to predict better as a “model committee”
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than individually if they are all sufficiently good and sufficiently different from one another.
These conditions create space for improvement by reinforcing strengths and compensating
weaknesses (rather than compensating both, reinforcing both, or reinforcing weaknesses and
compensating strengths).

As an elementary illustration, consider three classification models %, h,, h;, with the cor-
responding true misclassification error values e.(h;), e.(h,), e.(h;) with respect to a target
concept c. As explained in Section 7.2.1, these are the probabilities that the corresponding
models would produce incorrect predictions for a randomly chosen instance from the domain.
Now consider a simple combined model /, that aggregates the predictions of base models
hy, hy, hy by voting. Assuming a two-class classification task, the true error of this model is
then the probability that majority of base models (i.e., two or three in our case) make mis-
takes, i.e.,

e.(h,) = e.(h)e.(hy)e.(hs)
+ (l - ec(hl))ec(hZ)ec(hS) + ec(hl)(l - ec(hZ))ec(h3) (151)
+ ec(hpe (hy)(1 — ee.(h3))

Let us assume that all base models are sufficiently good and different from one another. The
former may be represented by setting an upper bound e for their error values and the latter —in
the unrealistically idealized case — by considering their mistakes independent. Under these
assumptions the above error may be bound as follows:

e.(h) <€’ +3e*(1—¢) (15.2)

What one might be interested to see is how this compares to the base model error bound e.
The corresponding inequality
e +3*(1—-e)<e (15.3)

may be easily solved, yielding 0 < € < 0.5. This is a pretty weak requirement, which means
(with the two-class assumption) that, for the ensemble to give an improvement, base models
have to perform better than random (although not perfectly, as the latter clearly would leave
no space for improvement). Thus, with just three base models, if they are just minimally
reasonable, but fully independent, a simple voting-based combined model will perform better.

While the discussion above is an illustrative special case rather than a general argument,
it at least demonstrates that the expectation of improved prediction performance by ensemble
modeling is justified and which are the conditions necessary to actually make it happen. Its
main limitation is not the small number of base models, since adding more models — which
makes the error more complex to calculate — may only improve the prediction quality. It is
the idealized assumption of model mistake independence that makes the derivation of error
bounds practically inapplicable. It is still useful as a source of insights, though. In practice,
creating multiple totally independent models for the same domain may be next to impossible,
but it remains possible and worthwhile to approximate this ideal situation with models that
are as diverse as possible, without sacrificing too much of their quality. The more such reason-
able quality base models are available to combine and more diverse they are, more prediction
quality improvement may be expected from the resulting model ensemble. While the actual
results may also differ significantly depending on the particular model aggregation method,
at least the available improvement potential depends on the base model portfolio.
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15.3 Base models

As discussed above, the main challenge for successful ensemble modeling is creating suffi-
ciently many sufficiently diverse and sufficiently good base models. Since any deterministic
algorithm will yield the same model when applied to the same training set with the same
parameter setup, the following approaches to ensuring diversity may be considered:

Different training sets. Use a different training set from the same domain to create each
base model.

Different algorithms. Use a different algorithm to create each base model.

Different parameter setups. Use a different algorithm parameter setup to create each base
model.

Algorithm randomization. Use independent runs of a nondeterministic algorithm to create
each base model.

For reinforced effect, two or more of these approaches can also be applied in combination.
Each of them must be used with care, though, as pressing too much on the diversity of base
models may ruin their quality, which must remain at some reasonable level.

15.3.1 Different training sets

The most popular approach to creating multiple base models relies on the assumption that
applying the same algorithm to different training sets for the same task from the same domain
will yield models that are sufficiently diverse and sufficiently good at the same time. Ideally,
we should be able to draw these training sets from the domain independently at random. In
practice, no direct domain sampling is possible, though, and a number of different training
sets may only be obtained by sampling or transforming the original training set supplied for
the task at hand. This may include:

e sampling instances,

e replicating instances,

e varying instance weights (for weight-sensitive algorithms),
e sampling attributes,

e applying attribute transformations.

15.3.1.1 Instance sampling

Instance sampling is typically performed by drawing multiple bootstrap samples T, T5,
..., T, of the original training set 7, i.e., uniform random samples with replacement,
usually of the same size as the former. As demonstrated in Section 7.3.6, when discussing
bootstrapping as a model evaluation procedure, such a bootstrap sample may be expected to
contain about 63.2% of instances from 7". Each sample T; is used to create a base model £;
using the same modeling algorithm.

For instance sampling to be successful in delivering diverse models, the latter should be
created by an unstable algorithm, i.e., highly sensitive even to minor data variations. Decision
and regression trees are the most obvious and natural candidates, since their split selection,
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stop, and pruning criteria may yield different outcomes for slightly different datasets, result-
ing in different models being obtained. On the other hand, modeling algorithms that use the
training data to estimate numerical parameters representing their models rather than to make
discrete decisions, such as linear and other parametric models or the naive Bayes classifier,
do not react excessively to data perturbations and are considered stable.

Example 15.3.1 The following R code demonstrates the instance sampling approach to base
model generation. The base.ensemble.sample.x function applies the specified algo-
rithm to samples drawn from the provided dataset, using the standard sample function. Its
default settings produce bootstrap samples of the same size as the original dataset. The func-
tion is applied to create 50 base decision tree and naive Bayes models for the HouseVotes84
data, as well as 50 base regression tree and linear regression models for the Boston Housing
data. As an indirect and rough means of assessing the diversity of the base models obtained by
instance sampling, their training and test set misclassification error or mean square error val-
ues are determined. Test set errors are of particular interest, since — while even substantially
different models can be similarly good on the training set, they are more likely to differ with
respect to their performance on previously unseen data.
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As it could be expected, decision trees and regression trees obtained for different bootstrap
samples appear to exhibit more variability, at least with respect to their performance, than
naive Bayes and linear models.

15.3.1.2 Instance replication

Closely related to instance sampling, this approach modifies the training set by replicating
some instances (usually selected uniformly at random). With an unstable algorithm, this may
lead to different models being obtained. It is listed here as a possibility for the sake of com-
pleteness, but it does not appear to offer any important advantages over sampling and is not
commonly used.

15.3.1.3 Instance weighting

If the modeling algorithm used for base model creation is not only unstable, but also
weight-sensitive, as discussed in Section 1.3.7, varying nonuniform instance weights applied
to the fixed training set may be an attractive alternative to sampling or replication. Rather
than generating modified copies of the data, just the vector of weights is modified. It may
be therefore an elegant and efficient technique for base model creation. Base models %, &,,

. ,h,, would then be generated using the same training set, but different vectors of
per-instance weights w®, w®, ..., w™, with each vector w” containing weight wg) for
each instance x € 7.

In the simplest case, weights could be generated at random, but it is more common to see
this technique combined with some more refined weight adjustment schemes. Some of them
will be presented below when discussing boosting, one of the most popular and successful
instantiations of ensemble modeling.

Example 15.3.2 The following R code implements and demonstrates the instance weighting
approach to base model generation. The base.ensemble.weight .x function assumes
that the specified modeling algorithm accepts the we ight s argument. The weight vector is by
default initialized uniformly at random in the [0.3, 3] interval and then randomly re-generated
for each base model, which only serves the illustration purpose. Other initial vectors and more
refined reweighting schemes may be specified. In particular, the reweighting function specified
via the reweight argument obtains the last model’s predictions as its second argument, to
make it possible to alter instance weights based on how the model predicted for each of them.
The reweighting function may return NULL to instruct the base.ensemble.weight .x
function not to include the last created model in the ensemble and to stop creating base
models (before reaching the maximum number thereof specified via the m argument). This
capability is not actually used in the subsequent demonstrations, but will come

handy later. The skip.cond utility function is used to skip NULL models from |

the obtained list.
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Base model generation by instance weighting is demonstrated similarly as in the previous
example, but with the naive Bayes classifier skipped, since the R implementation used does
not support instance weights.

The distribution of the training and test performance of the generated base models provide
some insights into their diversity. While the simple and arbitrary instance reweighting mech-
anism used for this example does produce some base model variability, but it is less effective
than the instance sampling approach demonstrated in the previous example.
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15.3.1.4 Attribute sampling

Unlike the previous approaches, attribute sampling does not require that the modeling
algorithm be unstable. It requires instead that the set of attributes is sufficiently large to
permit drawing sufficiently many smaller samples. Any reasonable algorithm is likely to
yield considerably different models when supplied with different attribute subsets. This
is why the attribute sampling approach might appear attractive, but it may require careful
sample size tuning to properly tradeoff between base model diversity and quality.

With this approach, multiple random samples A, A,, ... ,A,, are drawn (without replace-
ment, as this would make no sense for attributes) from the original set of attributes A and base
models i, h,, ... ,h, are then created using the same set of training instances, each time
casted to the selected attribute subset. If using this approach with decision trees or regression
trees, it makes sense to use strict stop criteria that result in growing large trees, better fit-
ted (or possibly overfitted) to the training set, since with more splits selected there are more
opportunities for trees using different attribute samples to differ.

Example 15.3.3 The following R code implements the attribute sampling approach to base
model generation and presents a demonstration thereof, following the pattern of the previ-
ous examples. The frac parameter may be used to specify the number of attributes to use

as the fraction of the number of all available attributes. The c1ip.val function

is used to make sure that it is in the [0, 1] interval. The default value of O triggers |dmr.util
a heuristic setting the attribute sample size to the square root of the number of

attributes. The x . vars and y . var functions are used to extract the input and target attribute
names from the supplied R formula, and the make . formula function is used :
to construct a modified formula with a sample of attributes only. Notice the
minsplit=2 and cp=0 parameters passed to rpart, that result in growing

maximally fitted decision or regression trees.
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It is worthwhile to note how attribute sampling, in combination with strict stop criteria, not
only promotes the variability of tree models, observed indirectly via their test set performance,
but also reduces their quality. In particular, for the HouseVotes84 data decision trees loose most
of their accuracy advantage over the naive Bayes classifier.

15.3.1.5 Attribute transformation

Another attribute-oriented approach to base model generation is to transform attributes in
such ways that would affect models created by the adopted modeling algorithm. Not all com-
mon attribute transformations discussed in Chapter 17 may be appropriate for the purpose of
creating multiple base models, though. In particular, standardization and normalization are
of rather limited usefulness here, as they can only transform each attribute in a single way.
Discretization for continuous attributes may be more useful, as different discretization algo-
rithms and parameter setups may yield different discretized attributes. What is actually the
most interesting possibility is to use transformations specifically designed to stimulate model
diversity. They may be custom (possibly randomized) versions of the discretization or discrete
attribute encoding transformations that — unlike their standard counterparts — are not just try-
ing to preserve the predictive utility of the original attribute, but also to introduce diversity.
Such techniques are not employed by the most commonly used ensemble modeling algorithms
and therefore are not discussed here.
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One specific example of attribute transformation that is particularly relevant to ensemble
modeling is multiclass encoding, normally used to handle more than two classes with algo-
rithms capable of delivering two-class classification models only. As extensively discussed
and demonstrated in Section 17.4, multiclass encoding techniques create and combine multi-
ple two-class models, and therefore can also be viewed as ensemble modeling techniques.

15.3.2 Different algorithms

The approach of using different algorithms to create base models assumes that the very same
training set is passed to a number of modeling algorithms that hopefully produce sufficiently
good and sufficiently diverse base models. This rarely makes it possible to create more than
a few or a dozen base models, as this is how many algorithms for the same modeling task
are typically available in analytic toolboxes. This limits the utility of this approach, at least
in its pure form. It may become more attractive, though, in combination with the two related
techniques discussed below.

15.3.3 Different parameter setups

The same algorithm may sometimes deliver substantially different models based on the same
data if used with different parameter setups. The corresponding approach to base model
creation makes sense for modeling algorithms that have parameters altering sufficiently
important aspects of their operation to yield diverse models. These could be, e.g., different
split selection or pruning criteria for decision or regression trees or different kernel functions
for support vector machines and support vector regression modeling algorithms that will be
presented in Chapter 16. This technique alone does not usually make it possible to generate
a large number of different base models and is of limited usefulness.

15.3.4 Algorithm randomization

The same algorithm with the same parameter setup may yield different models for the same
dataset if some of its processing steps are nondeterministic. While some algorithms may be
nondeterministic by nature, it is much more common and useful to deliberately randomize
deterministic (or nearly deterministic) algorithms.

Algorithm randomization consists in incorporating a nondeterministic modification to the
standard algorithm operation that does not degrade model quality too severely, but makes
different algorithm invocations likely to produce noticeably different models. The choice of
algorithm steps to modify and the exact modifications is obviously algorithm specific. For
algorithms that make internal decisions using certain criteria, based on evaluations of multi-
ple possible candidate decisions, it usually makes sense to randomize such decision-making
steps, e.g., by adding random noise to decision evaluations or randomly sampling the space
of candidate decisions. In particular, for decision or regression tree growing the split selection
operation is the natural candidate for randomization. It can be achieved either by randomly
disturbing the split evaluation function, or limiting the set of candidate splits to consider at a
given node to a randomly selected subset of all available splits or attributes. The latter resem-
bles attribute sampling, but here an independent sample of attributes is drawn in each node
instead of having a single fixed attribute sample for all nodes, as with the latter.

Notice that algorithm randomization can be easily applied in combination with any of the
training set modification techniques for base model creation, such as instance sampling or
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instance weighting. Basically, multiple models for modified training sets can be created using
a randomized instead of a deterministic algorithm.

Example 15.3.4 To illustrate algorithm randomization as an approach to base model cre-
ation, the following R code implements a simple randomized decision tree growing algorithm.
The grow . randdectree function is actually a slightly modified version of
the grow. dectree function from Example 3.3.8. The modification consists
in restricting the split selection process (performed by the internally defined
split.select function) to splits based on a random subset of available attributes. The
number of attributes to use is passed via the ns argument. If unspecified, the square root of

the number of all attributes is assumed. The clip.wval function is applied to

ensure the value of ns is in the proper range. Notice that the class attribute of
the created tree object is set to dect ree, to enable prediction method dispatching

(using the predict . dectree function defined in Example 3.5.1).

‘dmr.dectree
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The application of these randomized decision tree and regression tree growing
implementations is demonstrated by the following R code, following the pattern of the
previous examples. Notice that base model creation in this case simply reduces to multiple
invocations of the same randomized algorithm for the same training set. This is performed
by the base.ensemble.simple function. The predict.dectree and pre-
dict.regtree functions, defined in Examples 3.5.1 and 9.5.1, are used to generate
base model predictions. The resulting training and test set misclassification error and mean
square error values are calculated to make it possible to roughly assess the diversity of the
randomized tree models.
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Decision tree growing randomization applied to the HouseVotes84 data appears to give
little effect when looking at training set error distribution, but this is to be expected given their
default strict stop criteria leading to fitting the training set exactly. On the test set they exhibit
randomized trees substantially more variability than those obtained using instance sampling,
with somewhat reduced accuracy. Similar observations can be made for randomized regression
trees on the Boston Housing data.

15.3.5 Base model diversity

While all the base model generation techniques presented in this section serve the same pur-
pose of generating multiple diverse, but at the same time reasonably good, models for the
same domain, they are not equally effective in achieving this goal. Instance sampling has
the widest applicability and should be capable of delivering substantial diversity if used with
an unstable modeling algorithm. Instance weighting makes most sense when it is desirable
to somehow adjust subsequent base models to the performance exhibited by those created
previously. Otherwise it offers no advantages over instance sampling. Attribute sampling is
only applicable when there are sufficiently many attributes. Otherwise eliminating some of
them may excessively degrade base model performance. Varying algorithm parameters may
be effective only for some algorithms that are sufficiently sensitive to their parameter values. It
has to be used with care to avoid destroying base model quality. Usually only a small number
of different but sufficiently good base models can be created using this technique alone and
it can be truly useful only in combination with one of the others, usually instance sampling.
Algorithm randomization, whenever applicable, is easier to control and has much greater base
model diversity potential. It can be applied as a standalone base model generation technique
or as a diversity-stimulating companion to instance sampling.

Example 15.3.5 To illustrate the base model diversity potential of the techniques presented
in this section, the following R code produces boxplots visualizing the training and test set
performance of the base models created in the previous examples.

The obtained boxplots are presented in Figures 15.1 and 15.2. Clearly attribute sampling
yields the most diverse base models (judging based on their test set performance), but this is
at the cost of considerably worse error levels. Of the remaining techniques, instance sampling
and algorithm randomization appear to offer acceptable levels of tradeoff between diversity
and quality.
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15.4 Model aggregation

Model aggregation consists in combining base models A, h,, ... , h,, into a (hopefully bet-
ter) model A,. This is achieved by establishing a prediction combination scheme that makes
it possible to compute %, (x) based on &, (x), h,(x), ... , h,,(x) for arbitrary x € X. The com-
bined model 4, is represented by all of its base models and the scheme used for combining
their predictions. The latter may or may not need an explicit representation, depending on its
complexity.

Techniques used for base model creation do not depend on the modeling task, and the
same are applicable to both classification and regression — at least as long as no specific
instantiations of these techniques are considered. This is not the case for base model aggre-
gation, where discrete and continuous base model predictions may require different ways
of combining them into final ensemble predictions. Neverthless, they can be presented in a
mostly task-independent way, with task-specific details separated from the general principles.

15.4.1 Voting/Averaging

The simplest and at the same time most widely employed aggregation technique is class label
voting for the classification task and target function value averaging for the regression task.
The combined prediction is obtained as

n

mm:m%g;hmﬁ (15.4)
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where the I 40, DOtation is used to denote an indicator function that yields 1 when the
condition is satisfied and O otherwise, or

hw == 3 ) (15.5)
i=1

respectively.

In any case, while we formally speak of the combined model, what happens in reality is
just combining base model predictions, without creating any other model representation. Base
models are therefore just wrapped by the voting/averaging scheme for prediction combination.
There is no need therefore to access the training set in the model combination phase.

Example 15.4.1 Basic voting or averaging model combination is implemented by the
predict.ensemble.basic function defined by the following R code. It applies each
base model to the obtained dataset and, depending on the type of their predictions, uses one of
the two combination variants. Voting is performed using the modal function. The [gx 2419
predict.ensemble.basic function is demonstrated by applying it to com- | gmr . stats
bine all the base models generated in the previous examples. The misclassification —
error or mean square error values on the test sets are calculated for the combined

models and visually presented using barplots, with the corresponding indicators for single
models also included for comparison.



http://www.it-ebooks.info/

MODEL AGGREGATION

The barplots illustrating the performance of the created model ensembles are presented
in Figure 15.3. Only one of the decision tree ensembles, the one using base models obtained
by instance sampling, outperforms the single decision tree for the HouseVotes84 data. The
ensembles with base models obtained by attribute sampling are particularly poor, suggesting
that this base model generation methods may be not very useful if used alone. No improve-
ment can be observed for the naive Bayes models. Somewhat better results are obtained
for the Boston Housing dataset, with most regression tree ensembles (except that using
base models obtained by attribute sampling) outperforming the single tree. The ensemble
consisting of randomized regression trees turns out particularly successful. None of linear
model ensembles brings any improvement, though. This is because the averaged predictions
of multiple linear models remain linear, i.e., they could have been generated by a single
linear model.

15.4.2 Probability averaging

For probabilistic classification models, generating class probabilities rather than or apart
from class labels, an alternative probabilistic prediction combination scheme is possible. Let
Py, (d]x) denote the probability of class d for instance x delivered by base model h;. Then
the combined probability of class d for instance x is calculated by probability averaging as

follows: "

P, (d[x) = ) P(h)P, (d|x) (15.6)
=1

where P(h;) is the probability of model 4; in the ensemble, assumed to be L for all
i=1,2, ... ,m. This preserves the probability prediction capability of base models in the
ensemble, with all the related advantages, including the possibility of misclassification cost
minimization, as discussed in Section 6.3.3, or operating point tuning by ROC analysis, as
discussed in Section 7.2.5. If these are not needed, class label predictions can be generated
by simple probability maximization.

As a matter of fact, probabilistic predictions are possible even with model ensembles com-
prising nonprobabilistic base models, by taking

Py (dly) = {1 if Ao =d (15.7)

0 otherwise

The predicted probability of each class becomes then the number of votes for this class divided
by the number of base models. Even though the quality of such probability predictions is likely
to be inferior to that possible with proper probabilistic models, it may still be useful.

Example 15.4.2 The R code presented below defines the predict.ensemble.prob
function that performs base classification model aggregation by probability averaging.
The prediction function for base models passed via the prob argument is expected to
produce class probability predictions. Such probabilities obtained for all base models are
averaged and either returned directly, if the prob argument is set to TRUE, or used to
assign maximum-probability class labels. The latter is the default behavior demonstrated by
example calls which combine all the previously created decision tree and naive Bayes base
models for the HouseVotes84 data, except those obtained using decision tree randomization,
since its simple implementation lacks the probabilistic prediction functionality.

423
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15.4.3 Weighted voting/averaging

It may be sometimes a good idea to weight base models depending on their training set per-
formance or estimated true performance, with a weighting scheme that allows better models
to have more prediction impact. Incorporating model weights W, for each base model 4, leads
to the following prediction combination schemes:

n
h,() = argmax 3 Wil -y (15.8)
i=1
for classification, and ,
" Wohi(x
hy(x) = Lioi Wil (15.9)

er‘il Wi

for regression, where the uppercase W, is used to avoid confusion of model weights with
instance weights w,, also referred to in this chapter. Sometimes it may be more convenient
and natural to use the weighted sum rather than the weighted average:

h,(x) = Z W,h;(x) (15.10)
i=1
which is clearly the same if model weights are normalized to sum up to 1. Finally, the weighted
version of class probability averaging is defined as follows:
sy WiP(h)P,, (d]x)
iy WiP(h)

P, (d|x) = (15.11)

which can further be simplified, if all base models are assumed to have the same probability
of %, to the following form:

iz WiPy,(dly)
XL Wi

Model weighting schemes are usually specific to particular ensemble modeling techniques.

P, (dlx) = (15.12)

Example 15.4.3 Weighted voting/averaging model combination is implemented by the pre-
dict.ensemble.weighted function defined by the following R code. Weighted voting
is performed using the weighted.modal function, and weighted averaging

using the standard weighted.mean function. Optionally, summing may be |Ex.2.4.20
requested instead of averaging. The predict.ensemble.weighted func- |dmr.stats

tion is demonstrated by applying it to combine all the base models generated in
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the previous examples. A straightforward inverse error model weighting scheme is employed.
As before, the misclassification error or mean square error values on the test sets are calculated
and plotted for the combined models.

The barplots illustrating the performance of the created model ensembles are presented in
Figure 15.5. There is no significant impact of base model weighting on the prediction quality
of most of the model ensembles, which remains the same as with basic voting/averaging.
Only for the worst attribute sampling ensembles some improvement due to weighting may be
observed. The applied weighting scheme may not sufficiently vary the contributions of better
and worse base models, or the quality of base models may not sufficiently differ.

15.4.4 Using as attributes

A more refined approach than plain or weighted voting or averaging consists in using a model-
ing algorithm to create the aggregated model &, with base models A, h,, ... , h,, playing the
role of (the only or additional) attributes. Technically, this means that their predictions for the
training set are generated and used instead of or apart form the original attribute values. Such
data is passed to the modeling algorithm used to create the aggregated model, which may, but
does not have to, be the same as (possibly one of those) used for base model creation. It is
more common to use rather simple algorithms for model combination, but more refined ones
for base model generation.

It is also possible to consider multiple levels of such model aggregation, leading to a
hierarchical model ensemble. In this approach, base models created using the original set of
attributes, that may be referred to as level 0 models, are used as attributes to create multiple
level 1 models, which then in turn are used to create level 2 models, etc. The same techniques
for base model creation as discussed above may be used on each level to obtain multiple
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aggregated models — what changes is only the set of attributes used, which constitutes of or is
supplemented by the lower level models.

Despite its refinement and conceptual elegance, the approach of using base models as
attributes for model aggregation is not necessarily superior to simple voting or averaging.
Relationships between particular base models and the target attribute may not be predictively
useful enough to outperform the latter. This is not to say that this aggregation technique is
universally poor and useless, but rather warn that it is not necessarily superior to the much
simpler alternatives discussed previously.

Unlike basic or weighted voting/averaging, using base models as attributes means that an
actual representation of the combined model is created. The training set therefore needs to
remain available in the model combination phase.

Example 15.4.4 Base model combination by using them as attributes is implemented
and demonstrated by the R code. The implementation comprises two functions,
combine.ensemble.attributes and predict.ensemble.attributes.
The former creates the combined model using the training set, with base models used instead
of or apart from the original attributes (depending on the value of the append argument).
The latter applies such a combined model for prediction. The presented implementation
assumes that the target attribute name is available in the terms component of the model
object structure used to represent base models. This is true for some, but not all modeling
algorithms available in R —in particular, for the rpart and 1m models, but neither for
the naiveBayes model nor for the randomized decision and regression trees created by
the grow.randdectree and grow.randregtree functions. The demonstrations
presented below are actually limited to combining rpart decision tree and regression tree
models only, using the naive Bayes and linear regression algorithms on the second level.


http://www.it-ebooks.info/

SPECIFIC ENSEMBLE MODELING ALGORITHMS 431

15.5 Specific ensemble modeling algorithms

Various combinations of all the possible approaches to base model creation and aggregation
discussed above may be used, yielding a variety of ensemble modeling techniques. Some of
them have proved particularly useful and become extremely popular. These most noteworthy
specific instantiations of model ensembles are overviewed in this section.

15.5.1 Bagging

Bagging (standing for bootstrap aggregating) is definitely the simplest ensemble modeling
algorithm that combines the very basic approaches to base model creation and aggregation:

e base models are created using bootstrap samples of the training set,

e combined by plain (unweighted) voting for the classification task or averaging for the
regression task.

If using probabilistic base classification models, class label voting can be replaced by class
probability averaging, leading to a probabilistic version of bagging.

This technique may not promise extreme prediction quality, but is likely to give an
improvement compared to single models created using the same algorithm as base models,
as long as the algorithm is unstable. For stable algorithms, with base models not sufficiently
diverse, there may be no improvement or even minor degradation of prediction quality. There
are no particular requirements for the modeling algorithm other than instability. Actually, it
may be simplified compared to what would be normally used for single model creation, if
this makes it more unstable. This may include, in particular, giving up overfitting precautions
used in some algorithms, such as pruning decision or regression trees. Models overfitted to
their particular bootstrap samples are more likely to differ. The overfitting of base models
will not entail the overfitting of the ensemble, as their aggregation will effectively cancel it
out. Similarly, there is usually no need to bother with attribute selection, as more attributes
provide more opportunities to create many diverse models. This is a striking difference
compared to what is typical when single models are created.

Bagging may be thought of as a means of stabilizing unstable algorithms. Single models
obtained using such algorithms may be subject to considerable variation depending on a par-
ticular training set. There is always a possibility that for a slightly different training set a better
or worse model would be created. Creating multiple models based on different data samples
without combining them into an ensemble, and simply selecting one of them that appears
the best does not provide a valuable solution. This is because model selection would have to
based on model evaluation and the latter, as discussed in Section 7.3.1, only makes sense for a
repeatable modeling procedure. In particular, producing low-variance performance estimates
that could serve for model selection requires repeating training and evaluation cycles multiple
times. This is completely impossible for models that only differ in their training samples.

Bagging, with sufficiently many base models, allows one to be pretty confident that the
final model is at least as good as a single model in the optimistic case, and possibly even
improve over that. This is enough to justify the use of bagging if computational resources
permit creating dozens or more models, as typically used for this technique and if model
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human readability is not required. The bagging ensemble performance tends to improve with
increasing the number of base models up to a certain point, after which it stabilizes. This is
where the limit of model diversity possible using bootstrap samples is achieved. Additional
models are too much similar to the other ones to make any difference.

Example 15.5.1 The bagging ensemble modeling technique is implemented and demonstrated
by the R code presented below. Since bagging is the most straightforward combination of
instance sampling for base model creation and voting/averaging for ensemble prediction, the
corresponding functions are simple wrappers around the functions defined in Examples 15.3.1
and 15.4.1. The demonstrations also follow the same pattern and include the application of
bagging with decision trees and the naive Bayes classifier to the HouseVotes84 data, and with
regression trees and linear regression to the Boston Housing data.

The bagging ensembles for the House VotesS84 bring no improvement over the correspond-
ing single models. For the Boston Housing data regression tree bagging ensemble outperforms
the single tree considerably, though. The lack of improvement for the ensemble of linear mod-
els is not at all surprising, as bagging cannot overcome their linearity limitation in any way.


http://www.it-ebooks.info/

SPECIFIC ENSEMBLE MODELING ALGORITHMS 433

15.5.2 Stacking

The combination of using different algorithms (possibly with instance sampling to enable a
greater number of diverse models) for base model creation and using base models as attributes
for their aggregation yields the technique known as stacking. This term suggests a multilevel
hierarchy of models could be created, as discussed in Section 15.4.4. The number of levels
(no more than a few), the number of models, and the choice of algorithms used on particular
levels are design decisions that may have a significant impact on the final ensemble qual-
ity. This makes stacking much more difficult to properly use than bagging, where just one
algorithm and the number of base models need to be selected. Even in the simplest one-level
setting, stacking is actually more refined than just using base model outputs as attributes for
creating an aggregated model. It employs an internal data splitting technique related to the
k-fold evaluation procedure presented in Section 7.3.4 which makes sure that predictions serv-
ing as attribute values for any instance x are produced by base models created with x excluded
from the training set.

Using a modeling algorithm instead of simple voting or averaging to combine base models
might appear a much more powerful and promising approach, capable of delivering at least as
good, and likely better prediction quality. This is not necessarily the case, though, since base
models may not be sufficiently good attributes for typical modeling algorithms. This is because
the latter are usually designed to search for relationship patterns between the target attribute
and other attributes. Such patterns may not exist, or may be not predictively be strong enough
to outperform simple voting or averaging. In other words, using detailed information how
particular base models predicted may not permit any improvement over simply using the very
basic summary statistics: mode or mean. While there is definitely evidence of the usefulness
of stacking in some cases, this ensemble modeling technique has not become nearly as popular
as the other techniques reviewed in this section.

15.5.3 Boosting

Boosting can be best explained as an enhancement of bagging that attempts to include base
model diversity by shifting the focus during base model creation toward instances that turn out
the most “predictively difficult.” This effectively makes consecutive base models specialized
in different domain regions.

15.5.3.1 Base models

The shift of focus that underlies boosting is most naturally achieved by instance weighting.
A single modeling algorithm is applied to the same original training set 7 using a sequence
of varying weight vectors w", w®, ..., w®™. It does not necessarily rule out the application
of boosting with modeling algorithms that are not weight sensitive, though, since weighting
can be approximated by random sampling with replacement, using weights — normalized to
sum up to 1 — as instance selection probabilities. This sampling-based form of boosting most
directly corresponds to bagging and makes the view of boosting as a bagging enhancement the
most natural, but — as an approximation to the ordinary weighting-based boosting — is usually
not used unless necessary.

Starting from uniform initial weights w", the weight vector is modified after each base
model has been created and applied to the training set 7. Instances for which the model yields
poor predictions have their weights increased and/or those for which it yields good predictions
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have their weights decreased. For the classification task, this means simply raising the weights
of misclassified training instances and/or reducing the weights of correctly classified training
instances. For the regression task weight modifications would depend on model residuals.

For the regression task, it is also possible to use the previous models’ residuals as target
function values for subsequent base model creation instead of instance weighting. This will
make the regression algorithm attempt to compensate the previous models’ deficiencies rather
than optimize its own training performance. The first model £, is created in the usual way. For
i > 1, after models £, ... ,h;_; have been created, their combined residuals are used instead
of the target function values to create model 4;. This is another way of achieving the shift of
focus effect that is at the heart of boosting.

15.5.3.2 Model aggregation

Base models are combined using weighted voting, with model weights W, W,, ... ,|W,,
based on their training performance (and of course better models assigned higher voting
weights). This is necessary, since (unlike for bagging) — due to the shift of focus during their
creation — base models may exhibit considerably different training performance levels. In
particular, if sufficiently many of them are created, the most recent ones may be entirely
focused on the “most difficult” instances and yield poor predictions. It is important to
underline that weighted model performance measures need to be adopted, with the same
instance weights vector w® previously used to create model A; also used to evaluate it and
assign its voting weight W,. This can be, in particular, the weighted misclassification error
defined in Section 7.2.2 or any of weighted residual-based regression performance measures
defined in Section 10.2.8.

15.5.3.3 Properties

Notice that the shift of focus during base model creation in boosting not only stimulates
their diversity, but also drives the overall prediction quality, since instances that turned out
to be “predictively difficult” keep receiving increasingly more attention. This is expected to
boost the ensemble performance, as reflected by the term “boosting.” Indeed, boosting model
ensembles often belong to the most accurate models that can be achieved, at least for the clas-
sification task, on which boosting research and applications are mostly focused. Interestingly,
the performance of even very simple and imperfect base models may be boosted substan-
tially. It is particularly common to apply this technique with simple decision or regression
trees limited to just a few levels, or even just a single split. No overfitting prevention, param-
eter tuning, or attribute selection is then necessary or desirable. It is actually sufficient that
base models are just better than random guessing. Algorithms with parameters set up to yield
such just-above-random models are referred to as weak learners. All base models are then
nearly useless individually, yet they still form a powerful ensemble collectively. Each of them
is much more likely to be “underfitted” than overfitted, and it is the boosting process, with its
instance and model weight adjustments, that is responsible for most of the actual “fitting” to
the training set. This is in contrast to bagging, where the overfitting of individual base models
is normal and even desired for greater diversity, but canceled out by aggregation.

One possible disadvantage of boosting in comparison to bagging is that base models are
not independent and have to be created sequentially. For bagging, all base models can be
created in parallel, which enables efficient parallel implementations. This may be important
for such computation-intensive algorithms.
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15.5.3.4 Instantiations

Different schemes for instance weight modifications (or other focus shift techniques) and
model weighting may be used to instantiate boosting, which makes it actually a family of
ensemble modeling algorithms. The most noteworthy of these boosting instantiations for clas-
sification and regression are briefly reviewed below.

AdaBoost The AdaBoost (standing for adaptive boosting) algorithm is the best-known
instantiation of boosting, applicable to two-class classification tasks. As usual in this book,
we will assume that the set of classes is C = {0, 1}, although it is more common to present
the algorithm for the {—1,1} set of classes, which makes some steps easier to write by
implicitly exploiting the numerical nature of class labels. The essential specific features that
AdaBoost brings to the generic boosting techniques are its instance and model weighting
schemes. The weight of the model /; depends on its training set weighted misclassification
error e, 7, (h;), calculated according to the definition presented in Section 7.2.2, in the
following way:

W= 1 —e.7,0(h;)

1
—1In (15.13)
2 e 1.0 ")

This weighting scheme is a decreasing function of error values, which gives more weight to
more accurate models. The weight of model #; is not only used for voting during prediction,
but also to control the degree of instance weight modifications. The latter is performed as
follows:

W™ = @i wzan = (15.14)

where the indicator function I () returns 0 is the model predicts correctly for instance
x and 1 otherwise. The 2I, (4 — 1 expression is therefore equal to —1 if x is classified
correctly and 1 if x is misclassified. This increases the weights of misclassified instances and
decreases the weights of correctly classified instances to a degree that depends on the weight
of model h;. More accurate (higher weighted) models result in more extensive instance
weight updates.

Example 15.5.2 The following R code produces plots that illustrate the AdaBoost weighting
schemes.

curve (0.5*1log((1-x)/x), from=0, to=0.5,
xlab="model error", ylab="model weight")

curve (exp (0.5*log ((1-x)/x)), from=0, to=0.5,

xlab="model error", ylab="instance weight multiplier", ylim=c(0, 10), lty=2)
curve (exp (-0.5*%log((1-x)/x)), from=0, to=0.5, lty=3, add=TRUE)
legend ("topright", legend=c("misclassified", "correctly classified"), 1lty=2:3)

The obtained plots are presented in Figure 15.7. The first plot represents the dependence
of model weight on model error and the other the dependence of the multiplier applied to
modify instance weights on model error. The latter contains two curves, a gashed one for
misclassified instances, and a dotted one for correctly classified instances. In all the cases,
the range of model error values is limited to the [0, 0.5] interval, assuming base models have
above-random training performance.
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As we can see, model weights may considerably exceed 1 for good models (with error of
about 0.1 and below) and approach 0 for poor models with near-random training performance.
Model weight changes are more rapid for small error values than for large ones. The instance
weight multiplier applied for incorrectly classified instances grows rapidly with model error
dropping below about 0.1, correspondingly. Then it near-linearly drops from about 3 to about
2 for model error increasing from 0.1 to 0.2, and also near-linearly goes down from about 2 to
about 1 for model error raising from 0.2 to 0.5. The multiplier applied to the weights of cor-
rectly classified instances changes from O for perfectly accurate models to 1 for near-random
models in a mostly linear manner, except for small-error models, when it drops toward 0O faster.

The complete AdaBoost algorithm is presented below. It assumes that the modeling
algorithm used, referred to as M, is weight sensitive and does not require instance weights
to sum up to 1 (if the latter is not true, the normalization of the weight vector is required).
Similarly the weighted misclassification error is assumed to be calculated correctly without
requiring instance weights to sum up to 1. The algorithm performs at most m iterations, with
m designating the specified maximum number of base models, but may terminate earlier after
obtaining a base model that is not sufficiently better than random. To check this condition, the
model’s weighted misclassification error on the training set is compared against the expected
random guess error (.5, using a specified margin € > 0. Receiving such a poor model before
reaching the maximum number of base models indicates that no further improvement is
probably possible, and putting more weight on misclassified instances would result in further
degradation rather than improvement. The algorithm returns the set of created models and
their weights, to be used for weighted voting prediction.
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It can be shown that AdaBoost solves the optimization problem consisting in minimizing
the exponential loss of the created ensemble model 4, on the training set

Z e (e ~1 (15.15)

xeT

which clearly leads to minimizing the training misclassification error as well. Despite perfectly
fitting to the training set, it is not prone to overfitting — although not completely overfitting
resistant. This resistance is reinforced if base models are indeed severely underfitted, just
above random. Hence the popularity of decision stumps, i.e., one-split decision trees, in this
role. On the other hand, the risk of overfitting is increased for noisy data. These intuitively
“obvious” statements are not necessarily fully supported by empirical evidence, which some-
times provide surprising counter arguments, but in general — boosting does manage to avoid
overfitting in most practical classification tasks much better than most nonensemble classifi-
cation algorithms.

Example 15.5.3 The R code presented below implements the AdaBoost algorithm, using the
base.ensemble.weight .x function from Example 15.3.2 for base model generation
and the predict.ensemble.weighted function from Example 15.4.3 for prediction
combination. The former requires the instance reweighting function to be provided, which
does most of the work. Notice that the function takes care, in particular, of calculating and
retaining base model weights. The model weighting function applied includes an additional
term that depends on the number of classes and is equal to O for the two-class setting assumed
by AdaBoost. This actually implements one of its possible multiclass extensions, as discussed
in the next subsection. The algorithm is demonstrated in the same way as before, though, using
the two-class HouseVotes84 dataset. Decision trees of fixed maximum depth equal to 1, 3, and
5 are used as base models.

Notice that depth-1 decision trees (i.e., decision stumps) achieve the least misclassification
error, improving over that obtained for bagging in Example 15.5.1. Larger trees give worse
results.

Multiclass AdaBoost The AdaBoost algorithm strongly relies on the assumption that the
error of all base models does not exceed 0.5. This is perfectly reasonable if there are two
classes, for which this is the random guess performance level, but cannot be expected other-
wise. With errors above 0.5 the AdaBoost model weighting scheme is no longer useful, as it
may deliver negative weights.

The restriction to two-class classification tasks limits the practical utility of the AdaBoost
algorithm in an important way. There have been several attempts to overcome this restriction.
They have different levels of complexity, theoretical justifications, and practical advantages.
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One self-suggesting approach is to apply one of the binary multiclass encoding techniques
described in Section 17.4. The simplest of them would be to decompose a multiclass classifica-
tion task into multiple two-class tasks using the “1 vs. rest” approach. Conceptually, it consists
in replacing the original target concept ¢ : X — C with |C| concepts ¢, foreachd € C, where

e () = {1 if ctx) = d (15.16)

0 otherwise

For each of these a separate AdaBoost binary model ensemble can be created in the usual way.
This applies the 1-of-k encoding presented in Section 17.4.2.

A more refined incarnation of this “1 vs. rest” idea is also possible. Basically, instead of
multiple applications of the AdaBoost algorithm, one may apply the algorithm once, but with
each training instance x replaced by its |C| copies (x, d), each with one of the original class
labels d € C appended. The weights vector used for base model creation is correspondingly
extended, to assign a numerical weight w, ,; to instance (x,d). Base models created for
the resulting extended training set and weight vector are assumed, correspondingly, to
make binary predictions for instance-class pairs: /; : X X C — {0, 1}. Weights for extended
instances (i.e., instance-class pairs) are modified using the same formula as in the original
algorithm. The ensemble’s prediction for instance x would be then obtained by weighted
voting:

m
h,(x,d) = arg ,max, ; WL, c.ay=p (15.17)
h,(x) =argmax h,(x,d) (15.18)
deC

This technique is known as the AdaBoost.MH algorithm.

Another approach, known as the SAMME algorithm (stagewise additive modeling using
an exponential loss function) proceeds in a completely different way, by directly creating an
ensemble multiclass base models. It uses a modified model weighting scheme, incorporating
an apparently minor, but important change:

1 1 - ec’T’w_(h) 1
W,=-In ————— + —In(|C| - 1) (15.19)
2 €100, (1) 2

It is equivalent to AdaBoost for |C| = 2 and for |C| > 2 it incorporates an adjustment term
that preserves the exponential loss minimization property.

Gradient boosting Gradient boosting applies the idea of boosting to the regression task. A
sequence of regression models is created, with each model trying to contribute an improve-
ment to the training set performance achieved by its predecessors. Unlike for AdaBoost or
other instantiations of classification boosting, this is achieved not by instance weighting, but
rather by using the residuals of the ensemble of previously created base models instead of
the original target function values when creating a subsequent base model. Base models are
then combined using weighted averaging (or, actually, summation). This technique is pre-
sented below in its most generic form, although a randomized version thereof that additionally
applies instance sampling for greater base model diversity, referred to as stochastic gradient
boosting, may often perform better.
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The first model £, is created in the usual way. For i =2, ... ,m model A; is created to
predict the so-called pseudoresiduals:

S _OLG), i ()
' Ohy -1 (x)

(15.20)

of the partial ensemble #,.,_;, consisting of the previously created models A, ... ,h;_;, for
each x € T. In this equation, L is the adopted loss function to be minimized, as discussed in
Section 10.2.9. Predicting its negated derivative with respect to the previous iteration’s pre-
dictions is expected to decrease the total loss. For the most popular quadratic loss (i.e., mean
square error minimization), we would take r)(f) = f(x) = h;.;_;(x) . These pseudoresiduals are
passed to the regression algorithm instead of the original target function values. Base models
are combined by weighted summation to achieve both the partial and final ensemble, i.e.,

i—1

By (0 = ), Wihy(x) (15.21)
j=1

R () =y () = ) Wihi(x) (15.22)
j=1

The weight W; of model #; is selected to minimize the total loss, under the adopted loss
function, for the ensemble extended to include the model, which may be written as follows:

W; = parg min D L@ hyioy () + Whix) (15.23)
x€T
where 0 < f <1 is a step-size parameter. While the basic version of gradient boosting
assumes f = 1, using a smaller f value may help to reduce the risk of overfitting and improve
the generalization capabilities of the resulting model ensemble. This form of overfitting
prevention is referred to as shrinkage. The complete gradient boosting algorithm is presented
below.

hy = MUTLf: W, =15
cfori=2,3,..,mdo
: for all x € T do
r(i) c_ _OLG@hy i ),
X ohyi ()
h; 1= M(T, r9);
W, i= pargming, 3 LG, by, () + Whi(x);
end for

1
2
3
4:
5: end for
6.
7
8
9:return (i, W), ....(h,, . W,);

The regression algorithm M used for base model creation is assumed to receive the train-
ing set as well as the corresponding target values, with the original target function values used
for #; and the current residuals used afterward. It is not uncommon, though, to create a partic-
ularly simple first model that predicts a constant value, chosen to minimize the adopted loss
function. In particular, for the quadratic loss, this constant model would simply predict the
mean target function value for the training set:

@) = — D f) (15.24)

|T| x€T

as this clearly minimizes the mean square error over all possible constant models.
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For this most common special case of the quadratic loss (mean square error minimization)
we have

2
D LGy (0 + Whi()) = D (F@) = (B (6) + Why(x))) (15.25)
xeT x€T
Minimizing this quantity with respect to W yields, by equating the corresponding derivative
to 0:
Z(f(x) —hy.o(0) = Whi(x))h(x) =0 (15.26)

x€T

from which one can obtain
2oer(f ) = hy iGN X err P h,(x)
Zier h?(x) Der hl. (x)

This will clearly yield 1 if model /; does indeed perfectly predict the previous ensemble’s
residuals, but can be verified to be also equal to 1 even for completely imperfect regression
trees with target value means assigned to leaves. To see why, consider a leaf 1 assigned a
target function value equal to the mean target value for the corresponding subset of training
instances:

W=

(15.27)

D @) (15.28)

u =
| ll )CET]

Then the sum of target function value and prediction products for training instances assigned
to leaf 1 can be written as

Y f@hx) =Y ( (xo Zf( 2)> 2 D fafx) (15.29)
x€Ty x1 €Ty X €Ty xleTl x €Ty

On the other hand, the sum of squared predictions for the same subset of training instances
can be transformed in the following way:

PRGOS < 2 l)) ( 2 f(x2)>

x€Ty x€Ty xleTl xzeTl (1530)
=ITl—= D, D, fef(xy) = T DIDINIENEN:
| ll x1 €Ty x,€TY | |X[ET]X2€T]

which yields
D f@h() = Y K (15.31)
x€Ty xeTy

This immediately implies
Y F@he) = Y K@) (15.32)
xeT xeT

since summation over all training instances can be decomposed into summation over leaves
and then training instances assigned to these leaves. This property holds for an arbitrary target
function, including, in particular, the previous ensemble’s residuals in gradient boosting:

> ) = Y ) (15.33)

xeT xeT

from which W = 1.
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Notice that model weights for regression trees are all equal to 1, as expected. Unfortu-
nately, the mean square error levels for gradient boosting with regression trees are worse than
obtained for regression tree bagging in Example 15.5.1, although — with a maximum depth of
3 — better than for the single regression tree model.

15.5.4 Random forest

The random forest technique of ensemble modeling can be viewed as another enhancement of
bagging. This view is even more justified than that of boosting, since random forests actually
use bootstrap data samples as training sets for base model creation, just like bagging. The
enhancement consists in stimulating greater base model diversity by randomizing the model-
ing algorithm applied to these samples, which is — as the name of the technique suggests — a
decision tree or regression tree algorithm. Being tied to a particular modeling algorithm (or
a family of algorithms) is not such a distinctive feature of random forests as it might appear,
though, given the prevailing practice of using (the standard unrandomized versions of) the
very same algorithms with other ensemble modeling techniques.

15.5.4.1 Base models

Random forests combine two approaches to base model creation: instance sampling (using
bootstrap samples) and algorithm nondeterminism. The latter is achieved by randomizing the
split selection operation used for decision tree or regression tree growing. The randomization
consists in drawing a random subset of available attributes in each node and restricting the
subsequent split selection process to splits using attributes from that subset. The usual split
evaluation criteria for decision trees or for regression trees are then applied. Otherwise the
growing process remains unchanged. Stop criteria for decision or regression tree growing
are set up to yield relatively large, accurately fitted (more than likely overfitted) trees and
no pruning is applied. This setup, resulting in many splits being selected (and not pruned
off), permits a very high level of base model diversity, at least unless the number of available
splits (directly implied by the number of attributes) is overly small. A standard heuristic is
to use the square root of the number of all available attributes as the size of the randomly
drawn subset of attributes. Typically at least several hundred base models are created. Their
individual overfitting is canceled out by the aggregation process, which makes the random
forest ensemble highly resistant to overfitting.

15.5.4.2 Model aggregation

Randomized decision trees or regression trees used as base models for random forests are
aggregated via plain (unweighted) voting or averaging/summation.

Example 15.5.5 The R code presented below implements a simple version of random
forest ensemble modeling, using the grow.randdectree, grow.randregtree, and
base.ensemble.simple functions from Example 15.3.4 andthe predict .ensemble
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.basic function from Example 15.4.1. The predict.dectree and predict.
regtree functions, defined in Examples 3.5.1 and 9.5.1, are used to generate base model
predictions. The random forest algorithm is demonstrated for the HouseVotes84 and Boston
Housing datasets, using three different maximum tree depth settings: 3, 5, and 8.

For the HouseVotes84 data, the evaluated random forest ensembles improve over a sin-
gle decision tree, unless using the greatest maximum tree depth. This may appear surprising,
since increased tree depth permits more base model diversity and should therefore offer bet-
ter improvement potential. Attribute sampling may be too aggressive or the small number
of trees may be insufficient to compensate for their accuracy reduction due to randomized
split selection. The inefficiency of the presented illustrative implementation prevents creat-
ing larger random forests in reasonable time. For the Boston Housing data, the observations
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better match the expectations, with the random forest model using the least maximum depth
performing worse and the other two models — better than single regression trees.

15.5.4.3 Side effects

Apart from delivering ensemble models, the random forest technique also has some quite use-
ful “side effects,” obtained by appropriately using individual decision or regression trees from
the grown forest as well as the corresponding training sets or out-of-bag (OOB) instances. The
most useful of those are briefly discussed below.

Performance estimates Since each tree in the forest is grown using a bootstrap sample
drawn from the original training set, there is also the corresponding subset of instances not
used for growing. These are the OOB instances that were not drawn to the training sample.
For the particular tree these instances are therefore perfectly usable for the purpose of model
evaluation, i.e., can be used to calculate true performance estimates as if the standard hold-out
procedure were employed. It is the performance of the complete forest rather than that of indi-
vidual trees that is to be estimated, though. This is possible by combining the OOB predictions
of base models.

Let T{, Té, ..., T}, denote the sets of OOB instances for base models (trees) i1, iy, ... , h,,,
grown using training sets 7y, T,, ... , T, respectively. For any instance x € T let
L={ie{l.2,....m}|xeT]} (15.34)

designate the set of base model numbers for which x is an OOB instance. The OOB prediction
for instance x, denoted by /g (%), is then obtained by combining the predictions of all models
h;fori € I, via plain voting (for classification) or averaging (for regression). These predictions
for all x € T may be then compared against true class labels c(x) or target function values f(x)
to calculate any performance measure of interest. The misclassification error and the mean
square error are of course the typical choices.

Notice that such OOB-based performance estimation technique is by no means the same
as or a variation of the bootstrapping evaluation procedure discussed in Section 7.3.6, to which
it is only superficially similar. This is because the latter estimates the performance of single
models whereas the former estimates the performance of a complete ensemble. The result-
ing estimate is quite reliable and comparable to standard cross-validation with respect to its
bias and variance. Given the computational cost of random forest growing (with hundreds or
more trees), performing a standard cross-validation loop might easily become computationally
prohibitive.

Instance proximity Random forests make it straightforward to measure instance proximity
based on instance co-occurring statistics in individual trees. Basically, for each instance x € T’
and each tree h; for i = 1,2, ... ,n, the corresponding tree leaf I;, may be determined, by
passing down the training set through the tree. Then the proximity of instances x,x, € T is
calculated as the number of trees where they both end up in the same leaf:

m
UESEDY L. (15.35)
i=1
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While definitely related to dissimilarity and similarity measures discussed in Chapter
11, random forest-based instance proximity is calculated in an entirely different way and
may serve different purposes. While the former are based on attribute-value differences or
correlations, the latter represent rather the property of (usually) falling into the same domain
regions, with boundaries determined by the values of selected, predictively useful attributes.
One step toward relating these two quantities would be therefore to consider proximity
as similarity restricted only to predictively important attributes. Moreover, proximity is
not necessarily sensitive to attribute value differences that usually have no high impact on
model predictions, regardless of their scale. It may therefore not be appropriate for typical
instantiations of the clustering task, but may become useful for other purposes, such as
domain decomposition for modeling tasks or data preprocessing. In particular, one natural
application of such a proximity measure is missing value imputation where missing attribute
values for an instance may be imputed based on the known values observed for other
instances with the highest proximity to that instance.

Attribute utility Out-of-bag instances are useful not only for estimating model quality, but
also (for estimating) attribute utility, which may be viewed as particular attributes’ impact
on the former. With a set of spared nontraining instances for each tree one can observe how
crucial particular attributes are for the obtained predictive performance level. One way to do
this is to simulate “corrupting” each attribute (separately) by randomly permuting its values
in each tree’s OOB set and measure the effect of this “corruption.”

Assuming the same notation as introduced earlier in this section, one would compare reg-
ular OOB predictions, yielding hqnog(x) for each x € T, with the corresponding predictions
hoop.o(x) obtained with the values of attribute a randomly permuted in each of the OOB sets
T{, Té, ..., T!,. The permutation, performed independently for each tree, will have a consid-
erable impact on the predictions of those trees which use attribute a for splitting, particularly
on high levels, and little or no impact otherwise. With some base models yielding different
predictions, the combined predictions will change to some extent. For any selected perfor-
mance measure — with the misclassification error typically used for classification and mean
square error typically used for regression — the degradation observed for A op , in comparison
to hpop may be considered a measure of the predictive utility of attribute a.

Attribute utility estimation is arguably the most useful of random forest side effects that
sometimes becomes the main or only reason of creating a random forest. The estimated
attribute utilities may be then used for attribute selection, as discussed in Section 19.4.5,
and the final model may be created using another modeling algorithm based on the selected
subset. Such a usage scenario basically treats a random forest as an attribute selection filter,
and — setting the computational cost apart — it turns out to belong to the best filtering attribute
selection algorithms.

15.5.5 Random Naive Bayes

The success of the random forest ensemble has become motivation for exploring a similar
combination of base model creation techniques (i.e., instance sampling and attribute sampling,
which is closely related to decision tree randomization in random forests) with other modeling
algorithms. One particularly interesting candidate is the naive Bayes classifier. The resulting
ensemble modeling algorithm is referred to as the random naive Bayes classifier.
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15.5.5.1 Base models

Basically, the random naive Bayes ensemble consists of multiple naive Bayes models £y, h,,

., h,,, each created from an independent bootstrap training set sample 7; and permitted
to use only a randomly selected subset A; of attributes. Being a stable algorithm, the naive
Bayes classifier does not deliver sufficient base model diversity when created using bootstrap
samples, as discussed above. Incorporating random attribute sampling apart from bootstrap

instance sampling overcomes this deficiency, though.

15.5.5.2 Model combination

Unlike in most versions of bagging or random forests, the base models of the random naive
Bayes ensemble are not combined via simple voting. The inherent probabilistic prediction
capability of the naive Bayes classifier makes it much more reasonable to apply class probabil-
ity averaging to aggregate base model predictions. The resulting combined class probabilities
may be used for class label prediction in the usual way.

15.5.5.3 Properties

On one hand, random naive Bayes is just one out of many possible random forest-like bagging
extensions, combining instance sampling and attribute sampling for base model generation.
There are some reasons, however, to consider it particularly interesting. This is because the
simplicity of the naive Bayes classifier makes it possible to create multiple base models with a
relatively low computational expense, in particular much below that of decision trees. It may
be therefore more practical to apply to large datasets. This is also because using independent
attribute samples not only stimulates base model diversity, but additionally makes each of
them less prone to harmful effects of the unsatisfied independence assumption on which naive
Bayesian classification is based. In smaller attribute subsets attribute dependences are less
likely to occur. Therefore, each base model, while possibly inaccurate due to using incomplete
information, is less likely to be fooled by attribute dependences. Random naive Bayes may be
therefore successful whenever the “naivety” of the naive Bayes classifier becomes a problem.

Example 15.5.6 The random naive Bayes algorithm is implemented and demon-
strated by the following R code, using the naive Bayes classifier provided by the
el071 package. The randnaiveBayes function is essentially a combination of
the base.ensemble.samle.x function from Example 15.3.1 (instance sampling) and
the base.ensemble.sample.a function from Example 15.3.3 (attribute sampling). The
predict.randnaiveBayes function is basically a wrapper around the implementation
of probability averaging from Example 15.4.2.
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Unfortunately the random naive Bayes algorithm performs slightly worse than the original
deterministic algorithm. This may be due to a relatively small number of attributes, for which
sampling deteriorates model quality too much.

15.6 Quality of ensemble predictions

Model ensembles may be often expected to outperform single models, even created using
refined and carefully tuned algorithms. Sometimes, particularly for boosting and random
forests, the improvement may be quite substantial. It is, however the combination of data, base
model creation algorithms, and ensemble modeling techniques that is ultimately responsible
for the final prediction quality.

Example 15.6.1 The misclassification error or mean square error values for the model
ensembles created in the series of previous examples — using bagging and boosting with
decision tree, naive Bayes, regression tree, and linear base models, as well as the random
forest and random naive Bayes algorithms — are collected and compared to one another, as
well as to those achieved by single models, by the R code presented below. For each of the
two datasets used a barplot of error values is produced.
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The obtained barplots are presented in Figure 15.8. On the HouseVotes84 data the
AdaBoost and random forest ensembles gives an improvement over single decision tree
models, unless using excessive tree depth. Bagging produces worse predictions than single
models in the case of decision trees and gave no effect for the naive Bayes classifier.
Introducing random attribute sampling to the latter turns out to be harmful rather than
beneficial. On the Boston Housing dataset bagging applied to regression trees is the most
successful, with the random forest ensemble approaching a similar performance level with
sufficiently deep trees. Linear model ensembles all perform on the very same level as a single
model, which is to be expected, since the averaged predictions of a multiple linear models
remain linear.

15.7 Conclusion

There is a lot to be excited about in the idea of ensemble modeling. It is a conceptually
appealing and extremely successful practically approach to improving the predictive power of
inductive models. It not only makes it possible to get better predictive performance, but it also
makes the modeling process easier for the human analyst. Ensemble modeling usually means
no or little risk of overfitting, no or little parameter tuning, and no or little need for attribute
selection (although it may provide useful tools for the latter, as in the case of random forests).
This is because, when aggregating dozens or hundreds of base models, one may be much
less concerned about their individual quality. Actually, base models that would be quite poor
individually — in particular, overfitted due to lack of any overfitting prevention or underfitted
due to using simplified modeling algorithms — are likely to be useful ensemble components.
These unquestionable benefits are not received without a price. What has to be paid is
the vastly increased computational expense of creating many base models and using them
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for prediction (although it could be partially ameliorated for some ensemble modeling tech-
niques by appropriate parallel implementations) and the loss of human readability, even if
individual base models are perfectly human readable. Despite some efforts toward develop-
ing human-readable representations of model ensembles, the latter may remain the primary
limitation of their applicability in some domains.

15.8 Further readings

Ensemble modeling has been one of the hottest topics of machine learning research over the
last two decades, also becoming increasingly popular in practical applications in which the
predictive performance is of top priority. It has also found its way into recent comprehensive
data mining and machine learning books (e.g., Bishop 2007; Han er al. 2011; Hastie et al.
2011; Tan et al. 2013; Witten et al. 2011). There are also several survey articles on model
ensembles (e.g., Dietterich 2000a; Rokach 2010).

The idea of combining multiple models for improved predictive performance can be traced
back to early financial forecasting research (e.g., Bates and Granger 1969; Clemen 1989;
Reid 1968), but it became a hot topic in the area of machine learning in the 1990s. Bagging
was introduced by Breiman (1996a) as an approach to stabilizing unstable algorithms and
improving their model quality using the technique of bootstrapping (Efron 1979; Efron and
Tibshirani 1994). Schapire (1990) developed theoretical foundations of boosting and an early
boosting algorithm, following earlier theoretical work on weak and strong learnability (Kearns
and Valiant 1989). Freund and Schapire (1995) subsequently introduced the more refined
AdaBoost algorithm that remains the most widely used boosting algorithm. In the same article
a regression version of AdaBoost was also presented, which has not reached similar popular-
ity. Quinlan (1996) combined both bagging and boosting with his C4.5 decision tree induction
algorithm. Dietterich (2000b) compared bagging and boosting with an ensemble of decision
trees obtained by split selection randomization. Friedman et al. (2000) presented a statistical
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