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Abstract 7 

The electrical power system measurements are transmitted to the control center through a communication 8 

network. These measurements may contain bad data due to communication errors, systematic errors, incorrect 9 

wiring or infrequency of instrument calibration. As stated in the statistical literature, the estimators with high 10 

breakdown point are robust enough to overcome the effect of bad data. This paper discusses the application of 11 

one such estimator, Least Winsorized Square (LWS) by applying it to Tracking State Estimation (TSE). The 12 

proposed estimator detects, identifies the anomalies such as the existence of bad data and sudden change in load 13 

if present in the power system. Discrimination between the anomalies has been accomplished by a test of 14 

asymmetry (skewness measure). The proposed estimator has an inbuilt bad data rejection property with an 15 

ability to operate at any operating point without undergoing re-analysis phase of the TSE. The state estimation 16 

problem has been solved using JADE-adaptive differential evolution algorithm as an optimization problem. The 17 

effectiveness of the LWS technique has been tested on three different IEEE standard test systems. The results of 18 

the proposed method are compared with conventional weighted least square, particle swarm optimization, and 19 

gravitational search algorithm based state estimation techniques. Simulation results demonstrate the efficacy of 20 

the proposed algorithm as state estimates of the proposed method are highly precise even when the anomalies 21 

are present in the power system. 22 

Keywords: Anomalies; differential evolution; least winsorized square; power system; state estimation. 23 

1. Introduction 24 

1.1 Motivation and Aim 25 

During the decade, electric sector has been witnessing a continuous change from the traditional monopoly-26 

based system to a deregulated environment. In a deregulated environment, the pattern of power flow has become 27 

less predictable. Therefore, accurate monitoring of the power system has become essential for stable, 28 

economical, reliable, and secure operation [1]. To achieve such a task, true states (node voltages, power flows, 29 

etc.) of the power system are essential at any time. These states are estimated by a tool called state estimator 30 
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(SE). SE is an important component of the energy management system (EMS) which computes accurate and 1 

consistent states of the power system for a given set of redundant measurements. These measurements are 2 

remotely captured from the power system [2]. Power system state estimators (PSSE) have two basic approaches, 3 

viz. static and tracking. In a static approach, the estimator determines the static state estimates by considering a 4 

static model of the power system. The measured data in this approach are assumed to be time-invariant. 5 

Whereas, TSE tracks the changes in the power system by utilizing the recently available measurement data to 6 

obtain the state estimations in the subsequent time sampling [3]. Very often, the available measurements may be 7 

polluted by systematic errors and may be biased due to the infrequency of instrument calibration, instrument 8 

failures, measurement scaling, incorrect wiring, etc. Such measurements are termed as bad and constitute a bad 9 

data [4]. Another anomaly encountered in a real-time analysis of power system is the sudden change in states 10 

caused due to a sudden loss of load or generator, loss of transmission lines, etc. If these anomalies are not 11 

identified and detected correctly, then the outputs of the estimator are distorted, thereby producing inaccurate 12 

state estimates [5]. Such situations result in insecure, inefficient, and unreliable operation of the power system. 13 

In order to tackle such anomalies, an iterative process is usually performed to detect and eliminate the suspected 14 

measurements and re-estimating the states of the power system from the remaining data. However, in such a 15 

situation the computational time taken to estimate the state of the power system increases [2]. Consequently, 16 

there is a need to develop an efficient state estimator, which can accurately estimate the states of the power 17 

system even in the presence of anomalies. Therefore, the aim of the present paper is to propose a robust 18 

estimator having inbuilt bad data rejection properties and the ability to operate in any operating condition 19 

without having any re-analysis phase. 20 

1.2 Literature review 21 

The literature is quite rich in fundamental frequency power system state estimation [6-20]. The most 22 

outstanding papers relating to the SE problem can be found from the list of references in [6]. The most common 23 

estimator used in the technical literature is weighted least square (WLS) based SE technique. Tracking state 24 

estimation using WLS estimator has been developed in [5]. Newton method for static and tracking state 25 

estimation in power system using WLS approach is proposed in [7]. The performance of Newton method 26 

proposed in [7] has been validated on ill-conditioned systems which encounter problems in converging to the 27 

optimal solution. Although, WLS has a higher efficiency compared to other estimators, it has zero breakdown 28 

point, i.e. a single outlier can severely affect the estimation solution. Hence, WLS is said to be a non-robust 29 

estimator [8]. In order to overcome the disadvantage of WLS estimator, many alternative techniques which are 30 
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less sensitive to outliers have been proposed by various researchers. The weighted least absolute value (WLAV) 1 

estimator using linear programming is discussed in [9]. It is found that WLAV estimator shows automatic bad 2 

data rejection properties without any separate re-analysis phase. Owing to this advantage, the authors in [3] have 3 

extended the static WLAV estimator by applying it to tracking state estimation. Later it has been found that 4 

WLAV estimator fails to provide an accurate solution when measurements are positional outliers also known as 5 

leverage points [10]. Another shortcoming of WLAV estimator is its high computational time for large power 6 

system problems [11]. This issue has been addressed by applying WLAV to the larger power system using an L1 7 

linear approximation algorithm in [11]. In [10], the transformed system of measurement equations is suggested 8 

to maintain the robustness of the WLAV estimator even in the presence of leverage points.  9 

A least median square (LMS) estimator which minimizes 
th order squared residual has been discussed in 10 

[4, 12]. The LMS estimator has the property of eliminating the highest number of outliers compared to other 11 

estimators. A least trimmed square (LTS) estimator presented in [13] minimizes the sum of the squared residuals 12 

of order   and has a highest breakdown point similar to the LMS estimator. Meanwhile, other estimators based 13 

on non-quadratic functions have been reported in the literature [14-18]. Ref [14], suggested two non-quadratic 14 

estimators, namely quadratic-linear (QL) and quadratic-constant (QC) to identify and eliminate bad 15 

measurements. However, these estimators suffer from higher computational time compared to WLS based SE 16 

method. A transformation decoupled state estimator along with variable QC criteria has been employed in [15] 17 

to perform state estimation and bad data processing simultaneously. In [16], an iteratively reweighted least 18 

squares using Given-Rotations based on quadratic-tangent estimator criteria is presented. The performance of 19 

three different estimators, namely WLS, QC, and linear criterion has been tested for developing a fast tracking 20 

state estimator in [17]. The performance of the estimators is validated in the presence of small measurements 21 

and sudden state variation conditions. Recently, similar to LMS estimator, a state estimation procedure based on 22 

maximum agreement algorithm has been investigated in [18]. This approach maximizes the agreement between 23 

the measurements. A mixed integer programming based state estimator is proposed in [19]. The authors in [20] 24 

have extended the work suggested in [19] to simultaneously detect and reject gross measurement error, 25 

parameter error, and topology error.  26 

However, these methods assume that the objective function is differentiable and continuous. Further, with 27 

the existence of non-linear devices in the network such as var compensators, distributed generators, and 28 

transformers with on load tap changers, the system equations and therefore, the objective function is non-linear, 29 

discontinuous, and not differentiable. Hence, these non-linear power system equations have to be approximated 30 
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as a linear perturbation model which decreases the accuracy of the conventional state estimator. Furthermore, 1 

Gauss-Newton method used in conventional estimators may not converge if the problems are highly non-linear 2 

and if the initial guess is far away from the optimal value [21]. Hence, the use of evolutionary techniques (ET) 3 

to obtain a solution is evident. The main advantage of ETs compared to traditional methods are that these 4 

techniques are derivative free approaches and require only the objective function to direct the search process 5 

[22]. Moreover, from the above literature [4-20], it has been found that most of the robust estimators have been 6 

applied for static state estimation by concentrating either on increasing the robustness of the estimator against 7 

anomalies or improving the accuracy of the estimated states. Also, the performance of the estimators has not 8 

been tested in the presence of errors caused due to sudden load change conditions.  9 

Hence, this paper discusses the application of robust LWS estimator using JADE-adaptive differential 10 

evolution technique to the non-linear power system. The robustness of this technique is evaluated while 11 

applying it to TSE problem in the presence of bad data and sudden load change conditions. 12 

1.3 Contribution of the paper 13 

The contribution of the paper is threefold:  i) To present a least winsorized square estimator by applying it 14 

to track the time varying static state of the power system in the presence of anomalies without reinitiating the 15 

state estimator. ii) To improve the accuracy and robustness of the state estimator against anomalies. iii) 16 

Comparative study of the performance of the proposed estimator with statistical thoroughness. 17 

1.4 Organization of the paper 18 

The paper is organized as follows. Section 2 presents the state estimation problem formulation. Section 3 19 

briefly explains the JADE algorithm. Solution methodology of the proposed method is outlined in Section 4. 20 

Simulation study to analyze the LWS technique is provided in Section 5. Results and discussion are presented in 21 

Section 6. Finally, conclusions are drawn in Section 7. 22 

2. Problem Formulation 23 

The main task of state estimation is to obtain the best estimates of the state variables, viz. the voltage phasors 24 

at all buses based on the available set of measurements [23]. A general mathematical model of the power system 25 

state estimation which relates measurement vector ( )z to state variable vector ( )x is given as:  26 

  ( )z h x e                                                                            (1) 27 

where, z is a measurement vector of order ( 1)m  28 
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x  is a ( 1)n state vector ( 2 )n N m    1 

( )h x is a ( 1)m non-linear vector relating measurements to states 2 

n  represents number of state variables 3 

m  indicates the number of measurements 4 

e  symbolizes a measurement error vector of order ( 1)m and  5 

N  denotes the total number of buses. 6 

The measurement error vector ( )e  in (1) can be either Gaussian or non-Gaussian random variables. This 7 

measurement error vector represents different errors, viz. i) Instrument errors such as incorrect wiring, 8 

systematic errors, and infrequency of instrument calibration. ii) Operational uncertainties caused due to time 9 

skew (communication errors) and unexpected system changes. iii) Mathematical model uncertainties caused 10 

because of inaccuracy in network parameters and modelling errors [24].  Measurements are obtained from the 11 

meters, placed optimally in the network such that the whole power system is observable. To ensure 12 

observability, the number of measurements ( )m should be greater than the number of state variables ( )n . The 13 

resulting Jacobian matrix (a sensitivity matrix with respect to the state variables) for an observable power 14 

system has rank n , i.e. equal to the number of state variables.  In the present paper, to cope with the 15 

disadvantages of WLS based SE technique; the least winsorized square estimator proposed in [25] has been 16 

adopted.  17 

Let 2

ir represents the 
thi ordered weighted squared residual. The weighted residuals are squared and arranged 18 

in ascending order, i.e. 2 2 2 2

1 2 .. .. mr r r r     . Subsequently, the weighted residuals are winsorized at rank . 19 

This is done by replacing ( 1)th  residual with 
th residual. State estimation equation (1) is then solved by 20 

using least winsorized square by minimizing the objective function given in (2).   21 

2 2

: :

1

min ( ) ( )( )i m m

i

r m r





                                                                (2) 22 

where, 
1

2 2

m n


   
    
   

 23 

           
2

:i mr represents the 
thi ordered squared residual arranged from smallest to largest.                                                                                                                                                                              24 

3. JADE-Adaptive differential evolution algorithm 25 

Classical differential evolution (DE) algorithm, proposed by Price and Stone [26] is a simple yet powerful 26 

evolutionary algorithm for solving many global optimization problems in real world applications. However, the 27 
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performance of DE depends on mainly two components. The first component is its donor and trial vector 1 

generation strategy, and the second is its control parameter settings such as mutation factor ( )F , crossover 2 

probability ( ),CR and population size ( )PN [26-29]. As a result, the quality of the solution obtained and the 3 

efficiency of the search greatly depends on these parameters [27, 28]. Tuning the control parameters is a very 4 

time-consuming and tedious task [29]. To deal with the disadvantage of classical DE, JADE-adaptive 5 

differential evolution with an optional external archive is proposed by Zhang and Sanderson [29] along with a 6 

new mutation operator “DE/current-to-pbest”. Similar to all other evolutionary algorithms (EAs), JADE begins 7 

with randomly generating individuals which satisfy the constraints of population P of size PN with D decision 8 

parameters [26-29]. The population size remains constant throughout the optimization process that evolves over 9 

G  generations to reach an optimal solution and a parent vector from the current generation is termed as target 10 

vector. 11 

 

11 1

1P P

D

G

N N D

x x

P

x x

 
 

  
 
 

                                                                 (3) 12 

This population is randomly generated that is uniformly distributed in the feasible solution space. After 13 

initialization, JADE is carried out with three simple cycles of stages, namely the differential vector based 14 

mutation, crossover, and selection [26-29]. 15 

3.1 Difference Vector Mutation 16 

For every generation ,G another population called donor vector 
,i Gv is obtained from target vector (current 17 

population) by performing difference vector mutation. Some of the widely used mutation operators in the 18 

literature [26-29] are: 19 

1) “ DE/rand/1” 20 

, 1, 2, 3,.( ).i G r G r G r Gv x F x x                                                                     (4) 21 

2) “ DE/best/1” 22 

                 
, , 1, 2,.( ).  i G best G r G r Gv x F x x

                                                               
  (5) 23 

3) “DE/rand/2”                      24 

      
, 1, 2, 3, 4, 5,.( ) .( ).    i G r G r G r G r G r Gv x F x x F x x

                                                     
(6) 25 

4) “DE/best/2”                   26 

      
, , 1, 2, 3 4,.( ) .( ).    i G best G r G r G r G r Gv x F x x F x x

                                                   
 (7) 27 
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5) “DE/current-to-best/1”                     1 

  
, , , , 1 2,.( ) .( ).    i G i G best G i G r G r Gv x F x x F x x

                                                     
 (8) 2 

where, 1,  2,  3,  4,  5r r r r r  are randomly chosen different chromosomes from target vector in the range  P1,  N ,                3 

,best Gx is the best vector in the current generation G and F is a mutation factor [26-29]. 4 

However, in the present JADE algorithm a new generation strategy “DE/current-to-pbest/1” with optional 5 

archive has been introduced. For this, a mutation vector without archive is generated and is given as: 6 

, , , , 1, 2,. ( ) . ( )p

i G i G i best G i G i r G r Gv x F x x F x x                                                    (9) 7 

where, 
,

p

best Gx is randomly chosen from one of the top 100 %p individuals in the current population with 8 

(0,1]p  and control parameter 
iF  is updated in an adaptive manner. 9 

However, to provide the information about progress direction and to improve the diversity of the population, 10 

an archive that utilizes the historical data is created, viz. the archive A consists of recently explored inferior 11 

solutions [29]. The mutation vector strategy with archive is generated in the following manner: 12 

 
, , , , 1, 2,. ( ) . ( )p

i G i G i best G i G i r G r Gv x F x x F x x                                                 (10)  13 

where, 
2,r Gx is randomly chosen from the union, P A,  of the current population and the archive. 14 

3.2 Binomial Crossover 15 

After performing difference vector mutation, binomial crossover is executed to improve the diversity of the 16 

population. Binomial crossover is performed by generating a random number between 0 and 1 on each of the 17 

decision variables D to obtain another population called trial vector 
,i Gu . If the generated random number is 18 

greater than the crossover rate ( )CR  then the decision variable is inherited from the target vector 
,i Gx else 19 

decision variable is inherited from the donor vector
,i Gv , defined as follows: 20 

, ,

, ,

, ,

,  if (0,1)  or 

,  otherwise

j i G

j i G

j i G

v rand CR j q
u

x

 
 


                                                    (11) 21 

where, (0,1)rand is a uniform random number on the interval [0, 1], 1,.., ,  1,...,Pi N j D  and q is a randomly 22 

chosen index {1, , }pN which guarantees that the trial vector gets at least one parameter from the mutant 23 

vector; CR is an algorithm control parameter which assists the algorithm to escape from local optima [26-29]. 24 
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3.3 Selection 1 

Finally, the selection process is performed based on the fitness function value of the individual to determine 2 

whether the trial vector or the target vector survives to the next generation. The selection operation is given 3 

according to (12). 4 

, , ,

, 1

,

,  if ( ) ( )

,  otherwise



 


i G i G i G

i G

i G

u f u f x
x

x
                                                         (12) 5 

Hence, the population either gets better or remains the same in fitness status, but never deteriorates as the 6 

process is repeated. This, allows the individuals to improve their fitness as they explore the solution space in the 7 

search of optimal values [26-29]. 8 

In the present algorithm, a normal distribution and a Cauchy distribution are utilized to generate CR and F for 9 

each target vector, respectively. At each generation ,G the crossover rate 
iCR of each individual

ix is 10 

independently generated which is shown in (13). 11 

 ( ,0.1)i i CRCR randn                                                                  (13) 12 

where, irandn is a normal distribution with mean CR and standard deviation 0.1. 13 

It is then truncated to [0, 1]. Let 
CRS denotes the set of all successful crossover probabilities ‟iCR s at 14 

generation G [29]. The mean CR is initialized to be 0.5 and then updated at the end of each generation as: 15 

 (1 ). . ( )CR CR A CRc c mean S                                                                                           (14) 16 

where, c  is a positive constant between 0 and 1, and (.)Amean is the usual arithmetic mean. 17 

Similarly, at each generation ,G the mutation factor iF of each individual ix is independently generated 18 

which is given in (15) 19 

 ( ,0.1)i i FF randc                                                                     (15) 20 

where, irandc is a Cauchy distribution with mean F and standard deviation 0.1. 21 

Here iF is truncated to 1 if 1iF  or regenerated if 0.iF   Let FS denotes the set of all successful mutation 22 

factors in the generation G [29]. The location parameter F of the Cauchy distribution is initialized to be 0.5 23 

and then updated at the end of each generation as: 24 

(1 ). . ( )F F L Fc c mean S                                                                (16) 25 

where, (.)Lmean is the Lehmer mean which is given as: 26 
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2

( ) F

F

F S

L F

F S

F

mean S
F










                                                                    (17) 1 

4. Solution methodology 2 

Complete procedure of the proposed technique is presented in the flowchart shown in Fig. 1. Step by step 3 

procedure of the algorithm is explained below. 4 

[Figure 1 Here] 5 

Algorithm: 6 

Step 1: In this step, the maximum number of generations, population size in each generation, adaptive control 7 

parameters  and c p are initialized, and a measurement error of 5%  has been considered. The control 8 

parameters of the algorithm are provided in Table 1. 9 

Step 2: Now, Newton Raphson (NR) load flow analysis is performed for each time sample on the test systems 10 

under study to obtain the measured data. Subsequently, in order to make the simulated measurements be the 11 

same as the practical field measurements a measurement error of 5%  is added according to the method 12 

described in [23]. In the technical literature [1, 2, 6, 7, 22] measurement errors have been traditionally modelled 13 

as Gaussian distribution random variables. This is reasonable assumption because Gaussian distribution 14 

provides a good approximation for most of the distributions that arise in a practical power system. Moreover, the 15 

central limit theorem states that under random sampling, as the number of degrees-of-freedom ( )m n  16 

increases, the limiting distribution becomes more symmetric and is close to Gaussian. Hence, in the present 17 

work, the measurements are assumed to have a Gaussian error distribution with zero mean and standard 18 

deviation . Further, the proposed method works well even when the measurements have non-Gaussian 19 

distribution. This is due to the proposed LWS estimator pays more attention to the central portion of a 20 

distribution by transforming the ( 1)th  residual with 
th residual. This helps to pull the mean towards the 21 

middle of the distribution. Hence, the proposed method maintains optimal performance not only under the 22 

assumed Gaussian model but also for non-Gaussian model. 23 

 Step 3:  JADE starts with randomly generated population of size PN that follows a uniform distribution 24 

, ,0 ,low up

j j i jx x x  for 1,2,..., ,j D where, D is the dimension size of the problem. Here, number of state 25 

variables represents the dimension size of the problem. In the present work, node voltages are considered as 26 

state variables which are expressed in terms of magnitude and phase angle. Thus, for a N  bus power system the 27 
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total number of state variables will be 2 ,N i.e. the voltages and the corresponding phase angles at all the buses. 1 

However, by considering the slack bus as reference, the total number of state variables which are to be estimated 2 

will now be 2 -1N . Therefore, each individual chromosome in a given population can be represented as:
 

3 

1 2 2{ ,  ,...,  ,  ,...,  },  1,  2,  3, ,  i i i iN i iN Px U U U i N                                                (18)                         4 

where,
i1 i2,  ,...,  iNU U U  are the voltage magnitudes of 

thi chromosome and 
2 ,...,i iN  are the voltage phasors of 5 

thi chromosome. 6 

Thus, the dimension size of the population is .PN D   7 

In order to obtain the boundary conditions provided in (19), load flow analysis is performed initially by 8 

varying the load randomly between 35%  at each load bus from its base case of the test systems under study. 9 

Thus obtained maximum and minimum values of voltage magnitudes and voltage angles are selected as 10 

boundary conditions. It has been observed from the simulation study that the choice of limits does not affect the 11 

solution and these limits can easily be relaxed for higher load variations. 12 

0.75 p.u. 1.25 p.u.

    80 80o o

U



 

  
                                                                  (19) 13 

where, p.u.  represents per unit. 14 

Step 4: Set time sample 1k  .  15 

Step 5: In this step, field measurements set is determined for time sample k . After obtaining the field 16 

measurements, test of innovation process is performed to identify the presence of anomaly. If the presence of 17 

anomaly is detected, then skewness of measure test is performed to discriminate the anomalies, namely either a 18 

sudden load change or a bad data.   19 

Step 6: SE having a statistical criterion estimates the true states of the system by minimizing the objective 20 

function shown in (2). The SE problem formulated in (2) is a combinatorial in nature and requires Monte-Carlo 21 

like method to carry out a limited number of state estimation computations to determine one of the z essential 22 

sets which is free from bad data. In this paper, a method similar to the proposed method in [18] has been 23 

performed to obtain an essential set of measurements. Then these measurements are used to determine the 24 

fitness value of each chromosome of the current generation. 25 

Step 7: After the initial six steps, for each chromosome crossover rate ( )CR is initialized according to a normal 26 

distribution of mean 0.5CR 
 

and standard deviation 0.1. Similarly, scaling constant ( )F  for each 27 
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chromosome in the population is initialized according to the Cauchy distribution with location parameter 1 

0.5F 
 
and scale parameter 0.1. 2 

Step 8: In this step, calculation of the fitness function of the current population is carried out in three simple 3 

cycles of stages, viz. differential vector based mutation, crossover, and selection. Another population called 4 

donor vector is obtained through difference vector mutation. 5 

Step 9: After difference vector mutation, the donor population undergoes a binomial crossover operation to 6 

enhance the diversity of the population.  7 

Step 10: In this step, the selection process is performed to select best fitted chromosomes amongst the target 8 

population and corresponding trial population in the current iteration. This helps to obtain the target population 9 

for the next iteration.  10 

Step 11: Using normal distribution the crossover rate CR is updated with mean 
CR and standard deviation 0.1. 11 

Step 12: Using Cauchy distribution the mutation factor F is updated with mean 
F and standard deviation 0.1. 12 

Step 13: Steps 8 to 12 are then repeated until the number of generations reaches the maximum number of 13 

generations. 14 

Step 14: Update the time sample k as 1k k  .  15 

Step 15: Steps 5 to 14 are repeated until the number of time samples reaches the maximum number. 16 

Step 16: Stop. 17 

4.1 Parameter Selection 18 

SE is performed using different control parameter settings. After detailed study of 100 trials of the proposed 19 

algorithm, best control parameters corresponding to the minimum fitness value have been considered. The 20 

control parameters which are selected in this work are tabulated in Table 1. Control parameters ,  ,  ,Pc p N and 21 

G  are selected based upon the empirical study. For each test system under consideration, simulation study has 22 

been performed using different parameter combinations such as adaptive control parameter                                                 23 

c  0.01,  0.05,  0.1,  0.2,  0.5,  1 ,  adaptive control parameter p  0.01,  0.05,  0.1,  0.2,  0.5 , five different 24 

population sizes  50,  75,  100,  125,  150 ,PN  and maximum number of generations  250,  500,750 .G  25 

After performing the simulation study, minimum fitness value has been found when the maximum number of 26 

generations is 250, population size of 100, adaptive control parameter c   0.1, and adaptive control parameter 27 

p 0.05. Therefore, these parameters are taken in this paper. 28 

[Table 1 Here] 29 
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 1 

5. Simulation Study 2 

The objective of the simulation study is to analyze the LWS based JADE technique by applying it to TSE. 3 

Further, validation of the performance of the estimator has been carried out under normal operation, bad data, 4 

and sudden load change conditions.  5 

5.1 Test systems 6 

Simulation tests have been performed on three test systems, viz. IEEE 14-bus, IEEE 30-bus, and IEEE 57-7 

bus systems [30]. 8 

5.2 Measurement generation 9 

States of the power system are estimated by utilizing the information obtained from the PMUs and 10 

conventional meters, placed optimally across the network. In this paper, an over-determined system with a 11 

measurement redundancy ( / 2)m n has been considered. A system is said to be over-determined if the number 12 

of measurements are greater than the number of state variables. In the present work, 46 measurements, 102 13 

measurements, and 192 measurements have been used for IEEE 14-bus, IEEE-30 bus, and IEEE 57 bus systems 14 

respectively. The simulation study is performed by linearly varying the load at each bus from 70%  to 130%  15 

with a trend of 2%,  plus a random fluctuation of 2% of the trend component. Constant power factor has been 16 

assumed so that reactive power follows the active power [31]. In the absence of practical field data, Newton 17 

Raphson load flow analysis is performed for each time sample on the test systems under study to obtain the 18 

simulated data (true values). In order to make the simulated measurements resemble the field measurements, 19 

5% randomly generated measurement error has been added. The final measurement vector thus obtained acts 20 

as an input to the proposed state estimator and the operation of the test systems is given below: 21 

a) Normal operation: For normal operating condition, the loads are varied linearly. Measurements in this 22 

operation are assumed to be noisy. Moreover, it is assumed that these measurements are free from bad data. 23 

b) Measurement set with bad data: The proposed method has been simulated for a scenario where bad 24 

measurements are present in the measurement set. To obtain this measurement set, five different conditions are 25 

considered on all the test systems under consideration. These conditions are as follows: 26 

i) introducing one bad data measurement selected randomly with reverse polarity at 5th
time sample. 27 

ii) introducing two bad data measurements selected randomly with reverse polarity at 10th
time sample.  28 

iii) introducing two bad data measurements selected randomly with reverse polarity at 15th
time sample.  29 
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iv) introducing three bad data measurements selected randomly with reverse polarity at 20th
time sample.  1 

v) introducing four bad data measurements selected randomly with reverse polarity at 25th
time sample.  2 

It is assumed that the bad measurement disappears after the particular time sample. 3 

c) Sudden load change operation: The performance of the proposed method has also been investigated under 4 

sudden load change conditions. Measurement set for this condition has been determined under the following 5 

scenarios: 6 

For test case 1, i.e. IEEE 14-bus system, the following sudden load change conditions are observed: 7 

i) 50%  load reduction at 6th
time sample on bus 3 8 

ii) Sudden loss of load at 10th
time sample on bus 9 9 

iii) 50%  load increase at 15th
time sample on bus 3 10 

iv) 20%  load increase at 20th
time sample on all the load buses 11 

v) Sudden loss of load at 23rd
time sample on bus 14  12 

vi) 20%  load decrease at 31st
time sample on all the load buses 13 

For test case 2, i.e. IEEE 30-bus system, different sudden load change situations are simulated. These are: 14 

i) 50%  load reduction at 6th
time sample on bus 30 15 

ii) Sudden loss of load at 10th
time sample on bus 19 16 

iii) 50%  load increase at 15th
time sample on bus 30 17 

iv) 20%  load increase at 20th
time sample on all the load buses 18 

v) Sudden loss of load at 23rd
time sample on bus 8 19 

vi) 20%  load decrease at 31st
time sample on all the load buses 20 

and finally for the third test case, i.e. IEEE 57-bus system, the following sudden load change conditions are 21 

assumed to occur: 22 

i) 50%  load reduction at 6th
time sample on bus 50 23 

ii) Sudden loss of load at 10th
time sample on bus 51 24 

iii) 50%  load increase at 15th
time sample on bus 50 25 

iv) 20% load increase at 20th
time sample on all the load buses 26 

v) Sudden loss of load at 23rd
time sample on bus 18 27 
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vi) 20% load decrease at 31st
time sample on all the load buses 1 

d) Discrimination of bad data and sudden load change: In the power system, sudden change in states may 2 

occur due to sudden loss of loads or unscheduled generator outage and switching operation of the power system 3 

elements. Therefore, in order to discriminate between bad data and sudden load changes, a method proposed in 4 

[32] has been adopted in the present work. To accomplish such a task, two tests have been performed. In the 5 

initial step, the test of innovation process is performed to detect the presence of any anomaly in the 6 

measurement set.  This is defined as follows: 7 

, max( ) ( ) ( )i i N ik k k                                                                   (20) 8 

where, ( )k is the innovation vector at time instant k . 9 

             
N  is the standard deviation of innovation vector ( )k . 10 

In order to discriminate the anomaly due to bad data and sudden change in load, skewness of measure test is 11 

then performed [31]. It is pointed out here that only in case of bad data in the measurement set; the innovation 12 

vector ( )k becomes asymmetrically distributed and its asymmetry index (skewness measure) is given by the 13 

following equation: 14 

3

3( ) ( ) ( )k M k k                                                                       (21) 15 

where, 3M is the third moment.  16 

              is the standard deviation of the distribution at kt .  17 

From (21), occurrence of bad data is determined. If ( )k is greater than a pre-defined threshold value say18 

max( ),a then measurements have gross errors else sudden load change is detected. 19 

5.3 Performance evaluation 20 

The following important performance index and statistical parameters are used to assess the performance of 21 

the proposed method and its comparison is carried out with WLS, particle swarm optimization (PSO), and 22 

gravitational search algorithm (GSA) based SE techniques [33]. 23 

5.3.1 Performance index 24 

Filter effect ( )J k is calculated to assess the overall estimation performance and is given in (22) 25 

1

1

ˆ ( ) - ( )
( )

( ) - ( )

m t

i ii

m t

i ii

z k z k
J k

z k z k









                                                                    (22) 26 
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where, ˆ ,  , and t

i i iz z z are the final estimated, true, and measured measurement values. 1 

In case of good filtering the above performance index ( )J k should be less than one. 2 

5.3.2 Statistical parameters 3 

 The following different statistical parameters as specified in [33] are used: 4 

The maximum of mean square error (MMSE): MMSE of the state estimates is computed according to (23) 5 

2

1

1
ˆmax ( ( ) ( ))

NS
true

i i

k

MMSE x k x k
NS 

 
  

 
                                                         (23) 6 

where, NS represents the number of time samples. 7 

            
ˆ ( )ix k and ( )true

ix k  are the estimated and the true measurements of the state vector at 
thk time sample. 8 

The maximum standard deviation error (MSDE): MSDE of the state estimates is determined as: 9 

0.5

2

1

1
ˆmax ( ( ) ( ))

( 1)

NS
true

i i

k

MSDE x k x k
NS 

 
  

 
                                                  (24) 10 

The maximum of sum squared error (MSSE): MSSE of the state estimates is calculated according to (25) 11 

2

1

ˆmax ( ( ) ( ))
NS

true

i i

k

MSSE x k x k


 
  

 
                                                           (25) 12 

The average of absolute error (AAE): AAE of state estimates is determined as: 13 

(2 1)

1 1

1 1
ˆ( ( ) ( ))

(2 1)

NNS
true

i i

k i

AAE x k x k
NS N

 

 

 
 

                                                    (26) 14 

6. Results and discussion 15 

As discussed in Section 5, the proposed method is applied on three IEEE test systems to study the 16 

performance of the estimator under three different scenarios, namely normal operation, bad data, and sudden 17 

load change conditions. Simulated results thus obtained are presented and discussed in this section. 18 

6.1 Normal operation condition 19 

Fig. 2 outlines the performance of the LWS technique based on statistical parameters. Comparison of the 20 

LWS with WLS, PSO, and GSA for the normal operating condition is also given in Fig. 2. As can be seen from 21 

the figure, the LWS estimator demonstrates the best performance for all the test systems as statistical parameters 22 

have least values indicating that the state estimates are nearly equal to the true states. GSA based SE technique 23 

provides reduced statistical parameters compared to WLS technique; however, this is larger than proposed LWS 24 

technique. Based on the statistical parameter values given in Fig. 2, it can be seen that PSO based SE technique 25 

provides poor results compared to other SE techniques. It can also be observed from Fig. 2, the statistical 26 
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parameter values of WLS, PSO, and GSA increase with an increase in the system size. While the statistical 1 

parameter values of the LWS based SE technique are intact. This proves that the LWS technique provides better 2 

estimates compared to the WLS, PSO, and GSA based SE techniques. 3 

[Figure 2 Here] 4 

6.2 Bad data condition 5 

In this case, LWS estimator is assessed in the presence of bad data. The bad measurements are introduced in 6 

the measurement set as explained in Section 5.2 (b). These bad data measurements may be caused due to 7 

incorrect wiring, time skew, systematic errors, infrequency of instrument calibration, etc. 8 

Fig. 3 provides the comparison of the performance index ( )J k of the proposed LWS estimator under normal 9 

and bad data conditions for the various test cases under study. It can be observed from Fig. 3 that the difference 10 

in the variation of performance index ( )J k is not drastic for all the test systems, as if there are no bad 11 

measurements. This is because of the proposed method provides an effective way of dealing with such type of 12 

problems by transferring the bad data measurements toward the most fitted values. This helps to pull the mean 13 

towards the middle of the distribution. As a result, the effect of bad data measurements on remaining good 14 

measurements is decreased, thus increasing the accuracy of the state estimates. Furthermore, measurement 15 

redundancy is also kept intact since the bad data measurements are not eliminated. Therefore, it is confirmed 16 

from Fig. 3 that the estimated results are not affected even in the presence of bad measurements. This shows the 17 

robustness, i.e. rejection properties of the proposed method against bad data. Hence, the proposed method does 18 

not require any re-analysis phase for bad data rejection.  19 

However, in case of WLS, PSO, and GSA based SE techniques that are optimal under normal operating 20 

condition generally have a large distorting influence even in the presence of single bad data, i.e. the remaining 21 

good measurements tend to compensate for the effect of one bad data measurement. This significantly degrades 22 

the accuracy of the estimated states.  Hence, re-analysis phase is necessary for WLS, PSO, and GSA based SE 23 

techniques to identify and remove these bad data measurements. Moreover, the removal of bad data 24 

measurement is associated with a decrease in measurement redundancy. 25 

Fig. 4 describes the comparison of statistical parameter values of the LWS estimator without bad data 26 

processor and WLS, PSO, and GSA based SE techniques with the inclusion of the bad data processor. From Fig. 27 

4, it can be observed that LWS estimator provides better estimated states compared to other SE based techniques 28 

even in the presence of bad measurements. Similar to the normal condition, LWS estimator has small statistical 29 

parameter values. These values have been retained for all the test systems under consideration. However, the 30 
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statistical parameter values of WLS, PSO, and GSA based SE techniques increase with an increase in the system 1 

size. This is an indication that LWS estimator is more reliable and robust compared to the other SE techniques.  2 

[Figure 3 Here] 3 

[Figure 4 Here] 4 

6.3 Sudden load changes  5 

In this case, sudden change in load condition is considered to evaluate the performance of the LWS based SE 6 

technique. For this, the system is operated at different operating points to accommodate sudden load changes as 7 

explained in Section 5.2 (c). Fig. 5 illustrates the comparison of performance index ( )J k of the LWS estimator 8 

under normal operation and sudden load change conditions. It can be observed from Fig.5 that even in the 9 

presence of sudden load changes; the difference in performance index ( )J k is not high and behaves as if there is 10 

no sudden state variation in the system operating conditions. This is due to the reason that LWS based JADE 11 

algorithm is a population based SE technique embedded with different state scenarios (candidate solutions) and 12 

hence takes care of the sudden load change condition smoothly. Further, to improve the computational time, 13 

LWS estimator utilizes the latest available estimated system states for the subsequent time sample. That is, the 14 

estimated system states obtained in the present sample are added to the population of the subsequent time 15 

sample as single chromosome. Remaining 1PN  chromosomes are then reinitialized. This process makes the 16 

LWS based SE technique robust even for sudden load change conditions. Summary of the statistical parameters 17 

of the LWS based SE method is presented in Table 2. From the table, it can be observed that similar to normal 18 

operation, the statistical parameter values are small even for sudden state variation conditions. Hence it can be 19 

concluded that the proposed LWS estimator provides better estimates even in the presence of sudden load 20 

changes. This demonstrates the superiority of the proposed LWS technique. 21 

[Figure 5 Here] 22 

[Table 2 Here] 23 

6.4 Anomaly detection and identification 24 

In this subsection, detection and identification of bad data measurements have been performed by two tests, 25 

viz. the test of innovation process and the test of skewness of measure. Both are explained in Section 5.2 (d). 26 

After obtaining a new set of measurements, anomaly detection is performed using normalized innovation vector27 

( )k . After multiple offline simulations of 100 trials, the threshold value max of 1.5 p.u. has been set to identify 28 

the presence of anomaly. When anomalies are present in the measurement set, then ( )i k of corresponding 29 
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measurement value will be larger than
max . Further, to discriminate the anomalies caused either by bad data or 1 

sudden load change, skewness of measure test is performed. For this the threshold value max 4a  has been 2 

established for all the test systems after multiple simulations of 100 trials. It means that, if „asymmetry index‟ 3 

k  is greater than
maxa then the identified anomalies using normalized innovation vector are bad data. 4 

Otherwise, errors in the vectors are due to sudden load change.  5 

For the sake of illustration, IEEE 14-bus system has been considered. Fig. 6 shows the normalized 6 

innovation vector corresponding to 5th
time sample. As can be seen from Fig. 6, the normalized innovation value 7 

of active power measurement  
25P   of bus 2 to bus 5 exceeds the predefined threshold value

max 1.5 p.u.   This 8 

indicates the presence of anomaly. It can be found from Fig. 8 (a), during 5th
time sample the asymmetry index 9 

k exceeds the threshold value 
max 4a  which confirms the anomaly is due to the presence of bad data in the 10 

measurement set. 11 

Now, consider a sudden change in load condition for the same test system. Fig. 7 depicts the normalized 12 

innovation vector for the sudden loss of load at bus 14 during 23rd
time sample. It can be observed from Fig. 7, 13 

the normalized innovation values ( ( ))i k  corresponding to the measurements 
9,14 13,14(P  and P )  near to bus 14 14 

exceeds the threshold value max 1.5 p.u.   this indicates the presence of anomalies. To confirm the anomaly is 15 

due to sudden load change condition, skewness of measure test is performed. As seen from Fig. 8 (b), during 16 

23rd
time sample the asymmetry index 

k is well below the threshold value maxa  confirming that the anomaly is 17 

due to sudden state variation and not because of bad data [34]. 18 

[Figure 6 Here] 19 

[Figure 7 Here] 20 

[Figure 8 Here] 21 

Further, the computational time taken by the proposed SE method is computed and is tabulated in Table 3. 22 

Table 3 consists of three columns indicating the test system under consideration, the total computational time, 23 

and the time taken for the first appearance of the solution with acceptable accuracy respectively. It is observed 24 

from the table that the major challenge of the proposed LWS technique is the computational burden which 25 

increases with an increase in the system size. This is due to an increase in the search space for finding the 26 

optimal solution. Although, the proposed method provides more precise estimates and highly robust against 27 

outliers compared to WLS technique, it cannot compete with WLS based SE technique in terms of 28 
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computational efficiency. This is due to the reason that LWS based JADE technique works on population, i.e. 1 

set of solutions while, WLS works with a single solution [18]. However, this drawback can be overcome by 2 

decomposing the large system into a multi-area system which significantly decreases the computational burden. 3 

This shall be the future work of the authors. Moreover, the computational burden can be decreased by effective 4 

programming and with an increase of computer speeds as being witnessed every year. Under these conditions, 5 

the evolutionary approach shall be very fast very soon [35, 36]. Hence, in the present day scenario the proposed 6 

method is an effective and efficient tool for off-line studies. 7 

[Table 3 Here] 8 

7. Conclusions 9 

In this paper, a new robust LWS based JADE-adaptive differential evolution is presented. LWS estimator 10 

has been implemented for tracking of the time varying static state of the power system. The proposed method 11 

has been validated on different IEEE test systems. The performance of the LWS estimator has been 12 

demonstrated by considering various simulation conditions, including pre-estimation detection and identification 13 

methods. The results obtained reveal that the proposed method can operate under any operating conditions 14 

without the need of reinitiating the tracking state estimator. The computational performance of LWS estimator 15 

has been compared with WLS, PSO, and GSA based SE techniques. On the basis of various performance 16 

indices used in the work, the results thus obtained substantiate that the proposed method provides precise state 17 

estimates. Also, the estimator is highly insensitive against anomalies compared to other PSSE techniques. 18 

Finally, it is confirmed from the results that the proposed technique shows reliable and robust performance in 19 

cases such as normal noisy operation, single and multiple bad data (outliers), and sudden load change 20 

conditions. 21 
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Figure Captions 1 
 2 
Fig. 1. Flowchart of the proposed LWS based JADE-Adaptive differential evolution estimation technique 3 

Fig. 2. Statistical parameter values under normal operation condition 4 

Fig. 3. Performance index ( )J k in the presence of bad data 5 

Fig. 4. Statistical parameter values under bad data condition 6 

Fig. 5. Performance index ( )J k in the presence of sudden load change conditions 7 

Fig. 6. Normalized innovation vector for bad data condition during 5
th
 time sample 8 

Fig. 7. Normalized innovation vector for sudden load change condition during 23
rd

 time sample 9 

Fig. 8. Skewness computation 10 
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Table Captions 1 
 2 
Table 1 Control parameter settings. 3 

Table 2 Statistical parameters under sudden load change conditions. 4 

Table 3 Computational time (sec) taken by proposed technique. 5 
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          Table 1  1 
          Control parameter settings. 2 

Algorithm Control Parameters 

JADE 

Population Size = 100 

No of Iterations = 250 

Adaptive Control Parameter c = 0.1 

Adaptive Control Parameter p = 0.05 
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Table 2  1 
Statistical parameters under sudden load change conditions. 2 

Test System MMSE MSDE MSSE AAE 

IEEE 14-bus 1.0410
-7
 3.310

-4
 3.2310

-6
 1.4410

-4
 

IEEE 30-bus 9.0510
-5
 0.009671 0.002806 4.8610

-4
 

IEEE 57-bus 9.4110
-6
 0.003118 2.9210

-4
 1.2710

-4
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 1 

  Table 3  2 
  Computational time (sec) taken by proposed technique. 3 

Test Bus System Ttotal Tfirst 

IEEE 14-bus system 2.5386 0.8223 

IEEE 30-bus System 3.9597 1.0256 

IEEE 57-bus System 5.5224 1.7349 
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