
 Procedia Computer Science 37 (2014) 447 – 450

Available online at www.sciencedirect.com

1877-0509 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014.
doi: 10.1016/j.procs.2014.08.067

ScienceDirect

International Workshop on Intelligent Techniques in Distributed Systems (ITDS-2014)

Distributed Database Design: A Case Study

Umut Tosun*

Baskent University Department of Computer Engineering, Engineering Faculty Baglica Campus, Ankara 06530, Turkey

Abstract

Data Allocation is an important problem in Distributed Database Design. Generally, evolutionary algorithms are used to determine

the assignments of fragments to sites. Data Allocation Algorithms should handle replication, query frequencies, quality of service

(QoS), cite capacities, table update costs, selection and projection costs. Most of the algorithms in the literature attack one or few

components of the problem. In this paper, we present a case study considering all of these features. The proposed model uses

Integer Linear Programming for the formulation of the problem.
c© 2014 The Authors. Published by Elsevier B.V.

Selection and peer-review under responsibility of Elhadi M. Shakshuki.

Keywords: Distributed Databases, Replication, Data Allocation

1. Introduction

Query response times, quality of service (QoS), consistency and integrity of data are very important in Distributed

Database Management System (DDBMS) applications. In a DDBMS, tables and fragments are distributed on dif-

ferent sites. Each query is executed from a site. The total cost consists of the cost the of query plan execution and

the cost of table/fragment accesses through the network. The data allocation problem is NP-complete. Therefore,

evolutionary algorithms are generally used to find a minimal cost solution to the problem. Data allocation algorithms

try to minimize the table/fragment access cost of the queries. They find an optimal allocation of tables/fragments to

sites. They also consider parameters like redundant data, table update costs, and site capacities. There are several

factors to be considered when designing a DDBMS. The queries deployed may have shared tasks and same queries

may originate from different sites. Site capacities, processing elements, storage and query response times are to be

handled at the same time. Therefore, the problem shows the nature of a multi objective optimization problem. We

designed a model with Integer Linear Programming (ILP) which has the capability of issuing each of these factors

as constraints. Network topology, replication, table/fragment update costs, originating sites, site capacities, query

frequencies can all be defined as constraints in this formulation.

∗Umut Tosun. Tel.: +0-090-312-2466661/2099 ; fax: +0-090-312-2466660.

E-mail address: utosun@baskent.edu.tr

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.067&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.067&domain=pdf

448 Umut Tosun / Procedia Computer Science 37 (2014) 447 – 450

2. Related Work

Genetic algorithms,1, 2, 3 simulated annealing and mean field annealing3, and ant colony heuristics4 are some of

the approaches in the literature for the solution of the data allocation problem. All of these methods omit one or more

features of the problem. Corcoran1 and Frieder2 do not consider site capacities and redundant data. The genetic

algorithm, simulated annealing and mean field annealing solutions proposed by Ahmad3 consider only non redundant

data. The ant colony approach proposed by Adl4 models the problem as a quadratic assignment problem. However,

update costs and replication costs were not handled in this work. Several algorithms were proposed with integer linear

programming5,6, 7. These algorithms are generally simple and do not cover a realistic query plan or network topology.

These formulations attack only small portions of the problem. They consider a specific part of the problem such as

allocation of fragments to sites horizontally/vertically or non-redundant allocation of data. Cornell and Yu5 proposed

a method to assign relations and join operations to sites. Their algorithm tries to minimize the communication costs

and aims the utilization of resources while assigning fragments to sites and executing join tasks at the same time.

The algorithm lacks to visualize the problem as a combination of query optimization, network utilization and data

allocation. The suggested approach tries to solve these problems separately. Furthermore, the proposed integer linear

programming formulation is complicated. Ailamaki and Papadomanolakis8 also used ILP for showing an efficient

and realistic bound for index selection. They claimed that the suggested approach finds tightly bounded solutions.

3. Distributed Database Design and Integer Linear Programming

The algorithm first calculates all the distances among the sites by Dijkstra’s shortest path algorithm9. All input

queries are assumed to be left deep. Base tables are considered as the leaves of the query trees. Sample query trees

which are used in our case study are shown in Figure 1. Base tables are represented with capital letter T and the

tables are named as T0 through Tn where n is the number of tables. Similarly, the joins are named as t0 through tn.

Selectivity factor is the ratio of the data to be transferred after the join operation. Base tables can also be truncated by

a selectivity factor.

Our network model consists of different link communication speeds as shown in Figure 2. There are three sites S 0,

S 1 and S 2. The sites have capacities C0 = 18MB, C1 = 15MB and C2 = 10MB. Links have communication speeds of

100KBps, 200KBps and 500KBps. The queries to be executed are shown in Figure 1. There are three sites and four

base tables. In order to represent the assignments of base tables to sites, we use the formalization in Table 1. The total

number of variables is 12 for site-table assignments given for this example problem instance. There are 30 constraints

and 8 of them are for the constraints stating whether replicas are allowed for each relation by giving the replica count

as a constraint (e.g. 1 means no replication for the corresponding table). Next, 4 constraints are given to make sure

that the total storage requirements for tables assigned to particular sites do not exceed the storage capacities of each

site.

There are 29 equations used for specifying the nodes that perform each operation of given queries and the objective

function includes the communication cost for each possible selected path. There are 2 queries used in our examples.

Query 1 executes 100 times from originating site S 0. Query 2 executes 20 times from site S 2. In our examples

we consider at most 2 replicas for all of the tables. Update ratios’ parameters are selected as 0.1, 0.05, 0.5 and 0.1

for tables T0-T3. Update costs are calculated by multiplying the ratio by table size. The objective function of the

optimization problem is to minimize the sum of costs of transmitting base tables and intermediate results used by

queries to sites S 0, S 1 and S 2 while executing the queries. Table size for T0 = 10MB and T1 = 8MB which gives

10MB × 0.5 = 5MB for T0, and 8MB × 1 = 8MB for T1 where 0.5 and 1 are the table selectivity values. When

performing the join operation, the resulting intermediate relation t0 is calculated as 5MB × 8MB × 0.3 = 12MB where

0.3 is the join selectivity. Similar to Query 1, Query 2 has two tables T2 = 6MB and T3 = 5MB. This results 6MB

× 0.4 = 2.4MB and 5MB × 0.8 = 4MB where 0.4 and 0.8 are the table selectivity values. When performing the join

operation, size of the resulting intermediate relation t1 is calculated as 2.4MB × 4MB × 0.1 = 0.96MB where 0.1 is

the join selectivity.

There are a total of 48 variables used to represent the optimization problem as a Linear Programming model.

12 of the values represent table to site assignments as shown in Table 1 whereas 36 of the variables represent the

communication costs and update costs. There are 8 equations corresponding to replication formulation. Equation 1

449 Umut Tosun / Procedia Computer Science 37 (2014) 447 – 450

 T0 T1

t0

sel = 0.5 sel = 1

Query 1

t’

sel = 0.3

 T2 T3

t1

sel = 0.1

sel = 0.4 sel = 0.8

Query 2

t’’

Fig. 1. Query trees used in our examples.

 S0

 S1 S2

100KBps 200KBps

C0=18MB

C2=10MBC1=15MB
500KBps

Fig. 2. Site Capacities: 18MB, 15MB, 10MB-Links: 100KB, 200KB, 500KB

Table 1. Table to Site assignment variables used in our model.
��������Table

Site
S 0 S 1 S 2

T0 x1 x2 x3

T1 x4 x5 x6

T2 x7 x8 x9

T3 x10 x11 x12

through Equation 4 represent the minimum number of tables to be inserted to sites. We used these constraints since

linear programming aims to set variables to 0 otherwise. Equation 5 through Equation 8 represent the maximum

number of tables to be inserted to sites. Generally the system tries to use replicas when update costs are zero. Each

query tries to exploit the tables it uses on its originating site.

x1 + x2 + x3 >= 1 (1) x4 + x5 + x6 >= 1 (2)

x7 + x8 + x9 >= 1 (3) x10 + x11 + x12 >= 1 (4)

x1 + x2 + x3 <= 2 (5) x4 + x5 + x6 <= 2 (6)

x7 + x8 + x9 <= 2 (7) x10 + x11 + x12 <= 2 (8)

Site capacities are represented with Equation 9 to Equation 11. The communication costs are the most important

part of the system. The most important issue with the communication cost variables is that the variable selection for

the parts of the query should be consistent. Query 2 originating from S 2 is expressed by equations Equation 12 to

Equation 20.

450 Umut Tosun / Procedia Computer Science 37 (2014) 447 – 450

10x1 + 8x4 + 6x7 + 5x10 <= 18 (9) 10x2 + 8x5 + 6x8 + 5x11 <= 15 (10)

10x3 + 8x6 + 6x9 + 5x12 <= 10 (11) −x12 + x42 + x45 + x48 = 0 (12)

−x11 + x41 + x44 + x47 = 0 (13) −x10 + x42 + x23 + x46 = 0 (14)

−x33 − x36 − x39 + x46 + x47 + x48 = 0 (15) −x32 − x35 − x38 + x43 + x44 + x45 = 0 (16)

−x31 − x34 − x37 + x40 + x41 + x42 = 0 (17) −x9 − x39 − x38 − x37 = 0 (18)

−x8 − x36 − x35 − x34 = 0 (19) −x7 + x33 + x32 + x31 = 0 (20)

The objective function which consists of update costs and communication costs are calculated as follows for Fig-

ure 2. The communication links have costs 10 sec. for S 0-S 1, 5 sec. for S 0-S 2 and finally 2 sec. for S 1-S 2 links.

These costs are average costs to transfer 1 MB of data between two sites. We know that the update ratios for the

respective tables are 0.1, 0.05, 0.5 and 0.1. Finally, the objective function for Figure 2 is Equation 21. After running

the plan for our example, tables T0 and T1 are located at site S 0 and tables T2 and T3 are settled in site S 1.

x1 + x2 + x3 + 0.4x4 + 0.4x5 + 0.46x6 + 3x7 + 3x8 + 3x9 + 0.5x10 + 0.5x11 + 0.5x12 + 0x13 + 5000x14+

2500x15 + 5000x16 + 0x17 + 1000x18 + 2500x19 + 1000x20 + 0x21 + 0x22 + 17000x23 + 8500x24 + 5000x25+

12000x26 + 7000x27 + 1000x28 + 13000x29 + 6000x30 + 0x31 + 480x32 + 240x33 + 480x34 + 0x35 + 960x36+

240x37 + 96x38 + 0x39 + 96x40 + 518.4x41 + 240x42 + 576x43 + 96x44 + 96x45 + 336x46 + 192x47 + 0x48

(21)

4. Conclusion

In this paper, an Integer Linear Programming formulation for the data allocation problem in distributed databases

is proposed. The proposed model exactly handles issues like site capacities, query frequencies and communication

costs. The model does not deal with fragmentation and same queries originating from different sites. Selecting

the appropriate network topology, network operation costs and query response times are also the other factors to be

handled in a realistic design. We plan to extend the algorithm for shared-task queries and fragment management in

the future. Load balancing and concurrent task execution are the other criteria to be handled as a future work.

References

1. A.L. Corcoran, and J. Hale, ”A Genetic Algorithm for Fragment Allocation in a Distributed Database System,” In Proc. 1994 Symp. on Applied
Computing, pp. 247-250, 1994

2. O. Frieder, and H. T. Siegelmann, ”Multiprocessor Document Allocation: A Genetic Algorithm Approach,” Transactions on Knowledge and
Data Engineering, vol.9, no.4 , 1997, pp.640642

3. I. Ahmad, K. Karlapalem, Y. Kwok, and S. So, ”Evolutionary algorithms for allocating data in distributed database systems,” International
Journal of Distributed and Parallel Databases, vol. 11, no. 1, pp. 532, 2002

4. R.K. Adl, and S.M.T.R. Rankoohi, ”A new ant colony optimization based algorithm for data allocation problem in distributed databases,”

Knowledge and Information Systems, vol. 20, no. 3, pp. 349-372, 2009.

5. D.W. Cornell and P.S. Yu, ”Site assignment for relations and join operations in the distributed transaction processing environment,” In Proc.
Fourth Int. Conf. on Data Eng., pp. 100-108, 1988.

6. B.Gavish and H. Pirkul, ”Computer and database location in distributed computer systems,” IEEE Transactions on Computers, vol. C-35, no.

7, pp. 583-590, 1986.

7. S. Ram and R.E. Marsten, ”A model for database allocation incorporating a concurrency control mechanism,” IEEE Transactions on Knowledge
and Data Engineering, vol. 3, no. 3, pp. 389-395, 1991.

8. S. Papadomanolakis and A. Ailamaki. ”An integer linear programming approach to database design,” In Proc. of the 2007 IEEE 23rd Int. Conf.
on Data Eng. Workshop, p.442-449,2007.

9. E. W. Dijkstra, ”A Note on Two Problems in Connection with Graphs,” Numeriche Mathematik, 1:269-271, 1959.

