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A Markov Chain Monte Carlo Approach to Nonlinear
Parametric System Identification

Er-Wei Bai, Hideaki Ishii, and Roberto Tempo

Abstract—Nonlinear system identification is discussed in a
mixed set-membership and statistical setting. A Markov chain
Monte Carlo (MCMC) approach is proposed that estimates the
feasible parameter set, the minimum volume outer-bounding ellip-
soid and the minimum variance estimate. The proposed algorithm
is proved to be convergent and enjoys some desirable properties.
Further, its computational complexity and numerical accuracy are
studied.

Index Terms—Monte Carlo, parameter estimation, system
identification.

I. INTRODUCTION

This technical note considers identification of a discrete time scalar
nonlinear system parameterized by an unknown parameter vector.
Clearly, identification methods and results depend on the characteri-
zation of the noise. For traditional probabilistic approaches, the noise
is often assumed to have certain probabilistic properties and then
asymptotic convergence analysis is carried out. On the other hand, the
set-membership approach simply assumes a hard bound on the noise
and the goal is to find the set of all parameters that are consistent with
the system assumptions and the observed data, which is referred to as
the feasible parameter set, e.g., see [3]–[5].

Set-membership identification has a long history and has regener-
ated interest in recent years [7], [9], [15], [18]. Finding the feasible
parameter set is, however, very challenging, in particular for nonlinear
systems [24]. An accurate feasible parameter set can be constructed
but the computational complexity may grow exponentially [12]. In
fact, it was shown in [24] that calculation of the feasible parameter
set even for a simply structured nonlinear system, e.g., a Hammerstein
or a Weiner system, is NP hard. To this end, one direction of research
is to find the minimum volume outer-bounding ellipsoid of the feasible
parameter set [10], [11]. Unfortunately, finding the minimum volume
outer-bounding ellipsoid is still nonconvex and intractable in a nonlin-
ear setting [8], [13].

Another direction of research is to combine the probabilistic and
hard bound approaches, referred to as a mixed approach [5], [9], [16],
[22]. The motivation is as follows. In the set-membership approach, the
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assumption is that only a hard bound, but no other a priori information
on the noise is available. In some applications, engineers have more
information than just a bound. For instance, it is often the case in
practice that the noise is assumed to be a truncated Gaussian so not
only the bound but the distribution inside the bound is available. In
this mixed setting, it is assumed that the unknown sequence is strictly
within a known hard bound, but at the same time is a random variable
with support provided by the hard bound. Note that there are key
differences between the set-membership and the mixed settings. In the
set-membership approach, every parameter in the feasible parameter
set is possibly the true but unknown parameter and it is impossible
to say that one estimate is more likely to be the true but unknown
parameter than any other. With a probabilistic distribution of the noise
within the bound, it makes sense to ask which estimate is the “best”
in some probabilistic sense since not all parameter estimates are equal.
If the minimum variance estimate is preferred for a given observed
data set, the best estimate is provided by the posterior conditional
expectation.

The objective of this technical note is to estimate the feasible
parameter set, the minimum volume outer-bounding ellipsoid and the
minimum variance estimate and to establish their convergence and
complexity properties. These three tasks are non-trivial individually
and, moreover, they require different tools. For example, algorithms
that aim at finding the minimum volume outer-bounding ellipsoid do
not provide any insight for deriving the minimum variance estimator.

In this technical note, we show that these three tasks can be
accomplished by one specific algorithm which enjoys some significant
convergence properties. In particular, we compute estimates of the
feasible parameter set, the minimum volume outer-bounding ellipsoid
and the minimum variance estimate following a different direction.
We remark that many numerical approaches have been developed with
great success, e.g., the Markov chain Monte Carlo (MCMC) algorithm
[14], [17], [19], [21], [23]. We follow the same direction and present a
sampling based approach.

The contribution of the technical note is threefold. First, an MCMC
algorithm to compute the feasible parameter set, its minimum volume
outer-bounding ellipsoid and the minimum variance estimate is pro-
posed, and its convergence and computational complexity properties
are derived. Secondly, we show that the computational complexity of
the proposed minimum volume outer-bounding ellipsoid is polynomial
in the dimension, even if the feasible parameter set is nonconvex. The
result is new in the context of set-membership identification and has
not been discussed in the identification literature on MCMC. Finally,
the assumption that the support of the target density is a connected set,
which is standard in the existing identification literature on MCMC
[17], is no longer required.

We would like to emphasize the differences between the Monte
Carlo (MC) method and the MCMC which is adopted in this technical
note. To apply the MC method, a set that outer-bounds the unknown
feasible parameter set has to be known a priori. Then, we randomly
generate points in the set according to, e.g., the uniform distribution.
The points that satisfy the hard bound constraints are accepted and the
others are rejected. This procedure leads us to an estimate of the
feasible parameter set. The MCMC works in a different way and
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actually generates a biased and correlated random sequence with the
limiting distribution approaching the true but unknown distribution.
It improves the convergence rate compared to the MC and this is the
reason why the MCMC is widely used [14], [19], [23]. The MCMC
algorithm is in fact cited as the top algorithm having the greatest
influence on the development and practice of science and engineering
in the 20th century.

The outline of the technical note is as follows. Section II provides
the problem formulation. The algorithms and technical results are
presented in Section III. Finite data length accuracy and computational
complexity issues are discussed in Section IV. Numerical examples
and discussions are provided in Section V. Some concluding remarks
are given in Section VI.

II. PROBLEM STATEMENT

The discrete time scalar nonlinear system considered is of the form

y(k) = f (y(k − 1), . . . , y(k − l), u(k − 1),

. . . , u(k − l), θ∗) + v(k)

= f (φ(k), θ∗) + v(k), k = 1, 2, . . . , n (II.1)

where u(·)’s are the given system inputs, y(·)’s the observed outputs
and φ(k) = ((y(k − 1) . . . y(k − l), u(k − 1) . . . u(k − l))T the
regressor, respectively. The nonlinear function f(φ(k), θ∗) : R → R
is a known measurable function which is parameterized by the un-
known parameter vector θ∗ ∈ Rq . The sequence v(k) indicates the
noise. The purpose of identification is to estimate θ∗ for a given input
output data set Z = {{y(k)}nk=1, {u(k)}nk=1}.

Identification methods depend on the characterization of the un-
known v(·)’s. For the traditional set-membership approach, v(·) is
assumed to be unknown but bounded by a known constant ε > 0,

|v(k)| ≤ ε, ∀k. (II.2)

For a given k, all parameter vectors θ that are consistent with the
assumptions on the system (II.1) and the bound (II.2) as well as the
observed data {y(k), φ(k)} can be described by

Sk = {θ ∈ Rq | |y(k)− f (φ(k), θ) | ≤ ε} .

Then, the feasible parameter set is the intersections of Sk’s

S =

n⋂
k=1

Sk. (II.3)

A goal of set-membership identification is to determine S for the
given data set. Since determination of the exact S is a computationally
difficult problem [24], a common approach is to approximate S by the
minimum volume outer-bounding ellipsoid. It is well known that any
ellipsoid in Rq can be written as {x | ‖Ax− b‖2 ≤ 1} for some matrix
A ∈ Rq×q and b ∈ Rq . It is also well known [6] that the volume of
an ellipsoid is proportional to det(A−1). Thus, the minimum volume
ellipsoid E containing S is given by

E = {x | ‖Ax− b‖2 ≤ 1} (II.4)

where A and b are the solutions to

min
A,b

det(A−1), s.t. sup
x∈S

‖Ax− b‖2 ≤ 1.

We now make an assumption on the feasible parameter set.

Assumption II.1:

1) The feasible parameter set S is bounded in Rq .
2) For any θ ∈ S and any small δ > 0, let Bδ(θ) = {x ∈

Rq | ‖x− θ‖2 ≤ δ} be a δ ball centered at θ. Then,∫
x∈Bδ(θ)∩S

dx > 0.

Boundedness on S is quite reasonable and standard because the
objective of identification is to reduce uncertainty in the parameters.
Clearly, if S is unbounded, the identification setting has to be re-
designed or more data need to be collected. The meaning of the second
part of the assumption is that any θ ∈ S is arbitrarily close to its
interior. This assumption prevents pathological cases that S has empty
interior.

In this technical note, we consider identification in a mixed set-
membership setting. It is assumed that v(·) is i.i.d. (independent and
identically distributed) and has a continuous positive density pv(·)
in [−ε, ε] and pv(v(k)) = 0 if |v(k)| > ε for all k. Note that there
is a difference between the deterministic and mixed settings. In the
deterministic setting, the answer to the question if a point lies in the
feasible set or not is binary, either yes or no. In the mixed setting,
the answer is given in probability. For a given noise density, if a
subset Q ⊂ Rq is in the feasible set or not is measured by a (true but
unknown) distribution π(Q). However, π(Q) = 0 does not guarantee
that Q is not in S, but it only says that this event occurs with probability
zero.

In this technical note, we also derive the minimum variance esti-
mate. For a given observed data set Z = {{y(k)}nk=1, {u(k)}nk=1},
the minimum variance estimate is the posterior conditional expectation
[17], [19]

θb = E(θ|Z) =

∫
θ∈S

θ p(θ|Z)dθ (II.5)

where the unknown posterior conditional density is given by

p(θ|Z) =
p(Z|θ)p(θ)

p(Z)

and p(Z) is the density of Z that is a constant with respect to θ and
p(θ) is the prior density of θ. In this technical note, we assume that no
a priori knowledge on the distribution of θ is available and therefore
the prior density is uniform in S as

p(θ) =
{
1/Vol(S), if θ ∈ S
0, if θ �∈ S

where Vol(S) is the volume of the set S. Note that p(Z|θ) can be
computed as in [17] by

p(Z|θ) = α1Π
n
k=1pv (y(k)− f (φ(k), θ))

for some constant α1 > 0. As a consequence, the unknown conditional
density may be written as

p(θ|Z) =
p(Z|θ)p(θ)

p(Z)
= αΠn

k=1pv (y(k)− f (φ(k), θ)) (II.6)

for some unknown α > 0. The computation of θb in (II.5) and the
evaluation of the conditional density p(θ|Z) of (II.6) are non-trivial
in practice.

To summarize, the purpose of the technical note is, for a given
data set and a positive density function pv(·) over [−ε, ε], to estimate
the feasible parameter set S of (II.3), the minimum volume outer-
bounding ellipsoid E of (II.4) and the minimum variance estimate θb
of (II.5). Further, these estimates must be convergent in some sense.
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III. ALGORITHM AND ESTIMATES

The computation of θb =
∫
θ∈S

θp(θ|Z)dθ is hard because both S

and p(θ|Z) are unknown. To this end, for a given data set Z, define

q(θ|Z)=

{
0, if |y(k)−f (φ(k), θ)) |>ε for some 1≤k≤n
Πn

k=1pv (y(k)−f (φ(k), θ)) ,
if |y(k)−f (φ(k), θ)) |≤ε for all 1≤k≤n.

(III.7)

The key idea in our approach is a method for generating a random
sequence in the unknown S according to the unknown conditional
density p(θ|Z). The MCMC technique can be used because the
explicit knowledge of the feasible parameter set S and the conditional
density p(θ|Z) is not required.

For a given data set Z and an integer m, the algorithm which
generates a sequence of θi, i = 1, 2, . . . ,m, according to the unknown
density p(θ|Z) in the unknown set S is now described.

Algorithm III.1

Step 1: Set i = 0.
(i) Generate a random vector ζ ∈ Rq ∼ N(0, σ2

ηI), where
N(0, σ2

ηI) is the Gaussian distribution with zero mean
and fixed variance σ2

ηI .
(ii) If q(ζ|Z) > 0 as defined in (III.7), set θ0 = ζ ∈ S and

i = 1. Then go to Step 2. Otherwise, if q(ζ|Z) = 0, i.e.,
ζ �∈ S, then go to Step 1.

Step 2: At each i ≥ 1, let

ζ = θi−1 + ηi−1, ηi−1 ∼ N
(
0, σ2

ηI
)

(III.8)

and compute the acceptance probability

γ(ζ|θi−1) = min

{
1,

q(ζ|Z)

q(θi−1|Z)

}
.

Step 3: Draw a random number z from the uniform distribution on
[0,1]. Set θi = θi−1 if z ≥ γ(ζ|θi−1) and set θi = ζ if z <
γ(ζ|θi−1). Set i = i+ 1.

Step 4: If i = m, stop. Otherwise, go back to Step 2.

The sequence generated by the above algorithm is dense in the
unknown set S when m → ∞ and further is distributed according to
the unknown p(θ|Z). Note that the convergence to p(θ|Z) is needed
if statistical properties of S are of interest. Furthermore, the sequence
should be dense in the unknown S since otherwise some parts of S
could be “missing.” Formally, the sequence {θi}mi=1 is dense in S
in the limit if for each θ ∈ S, there is a point θi arbitrarily close to
θ as m → ∞. Here, we consider this notion from the probabilistic
perspective. More precisely, on the limiting distribution, let π(Q) =∫
θ∈Q

p(θ|Z)dθ denote the probability of any subset Q ⊂ S according

to the density p(θ|Z) on S. Let Pm be the probability distribution
according to which the random sequence was generated with the above
algorithm. Then, we have the following result.

Theorem III.1: Consider the sequence θi ∈ S, i = 1, 2, . . . ,m,
generated by the above algorithm. Then

sup
Q⊂S

|Pm(Q)− π(Q)| ≤ (1− δ)m → 0, as m → ∞ (III.9)

for some small δ ∈ (0, 1). This implies that the limiting distribution is
p(θ|Z) and the sequence is dense in S in probability as m → ∞.

Proof: First, notice the relation q(ζ|Z)/q(θi−1|Z) =
p(ζ|Z)/p(θi−1|Z). Now, the Gaussian density pN (x) of N(0, σ2

ηI)
is strictly positive for all x ∈ Rq and symmetric, which implies that
the sequence of (III.8) is irreducible and aperiodic [23]. Moreover,
the support of p(θ|Z) is S, which is bounded and the support of the

Gaussian density pN ∼ N(0, σ2
ηI) contains the support of p(θ|Z).

Thus, there exists some small δ > 0 such that

pN (θ) > δp(θ|Z), if θ ∈ S.

Then, (III.9) follows from [17, Theorem 6.1]. To show that the se-
quence is dense in S, observe that for every θ∈S, we have p(θ|Z)>0.
This fact and (III.9) imply that the sequence must be dense as m → ∞.
This completes the proof.

Consider a random sequence θi ∈ S, i = 1, 2, . . . ,m, generated by
the above algorithm. We now construct the estimates Ŝm, θ̂b,m and
Êm of S, θb and E, respectively, by

Ŝm = {θ1, θ2, . . . , θm}, (III.10)

θ̂b,m =
1

m

m∑
i=1

θi, (III.11)

Êm =
{
x | ‖Âx− b̂‖2 ≤ 1

}
(III.12)

where Â and b̂ are the solutions to

min
Â,b̂

det(Â−1), s.t. max
θi∈Ŝm

‖Âθi − b̂‖2 ≤ 1.

To quantify the estimation errors, we adopt the standard Hausdorff
metric [20] given by

h(A,B) = max

{
sup
x∈A

inf
y∈B

‖x− y‖, sup
y∈B

inf
x∈A

‖x− y‖
}

(III.13)

which measures the distance between two sets. The following result
shows the convergence of these estimates.

Theorem III.2: Consider the system (II.1) and the estimates Ŝm,
θ̂b,m and Êm in (III.10), (III.11) and (III.12), respectively, under
Assumption II.1. Let θi ∈ S, i = 1, 2, . . . ,m, be a random sequence
generated by the algorithm discussed previously. Then, in probability
as m → ∞,

h(S, Ŝm) → 0, h(Êm, E) → 0, θ̂b,m → θb. (III.14)

Proof: First, notice that supy∈Ŝm
infx∈S ‖x− y‖ = 0 is obvi-

ous since Ŝm ⊂ S. Then, supx∈S infy∈Ŝm
‖x− y‖ → 0 follows from

Assumption II.1 and the fact that θi ∈ S is dense in S. Consequently,
h(S, Ŝm) → 0. This also implies that h(Êm, E) → 0. Finally, we
obtain θ̂b,m → θb from the MCMC theory [14], [17], [19], [23] as

θ̂b,m =
1

m

m∑
i=1

θi →
∫

θ∈S

θp(θ|Z)dθ = θb.

This completes the proof.
We now make a few comments concerning the algorithm.

• The estimates of the unknown feasible parameter set, the mini-
mum volume outer-bounding ellipsoid and the minimum variance
estimate can be obtained by the proposed MCMC approach.
Further, all three estimates can be calculated by one specific
algorithm.

• Among the three estimates, S and E are defined deterministically
and θb is defined over a probability space.

• The length of the observed data is n and the convergence of the
algorithm is with respect to m, not n, i.e., Ŝm → S, θ̂b,m → θb
for any given n as m gets larger. This fact is important since
one of the advantages of the set-membership identification, or the
minimum variance estimate, is that the results apply for finite n
even when n is small.

• In the proposed algorithm, there is a design variable σ2
η > 0. If σ2

η

is too small, most of ζ = θi−1 + ηi−1 are accepted and this im-
plies that θi “slowly” moves in S resulting in slow convergence.
However, if σ2

η is too large, most of ζ = θi−1 + ηi−1 are rejected
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making the algorithm inefficient. There is a large literature on the
selection of σ2

η and the interested readers may find the details and
references in [14], [19], [23].

IV. FINITE DATA LENGTH ACCURACY

AND COMPUTATIONAL COMPLEXITY

The exact calculation of a nonconvex feasible parameter set S is
known to be NP hard as the dimension q or the length of data n
increases. Thus, the minimum volume outer bounding ellipsoid E is
often used in practice [10], [11]. However, the calculation of E is also
expensive since S is unknown and it is hard to compute it. Even in the
case when S is available, the calculation of E is still expensive because
it is an optimization over a nonconvex set S.

In this technical note, an estimate Êm of E is proposed. Further,
it is shown that Êm → E as a consequence of the Hausdorff metric
h(Êm, E) → 0 as m → ∞, which is an asymptotic result. A more
interesting question is related to the estimation accuracy for a large but
finite m. To answer this question, we first observe that convergence
of Êm to E is not crucial. Secondly, we observe that Êm is actually
smaller than E in the sense that Êm is the minimum volume ellipsoid
outer bounding Ŝm and E is the minimum volume ellipsoid outer
bounding S, and Ŝm ⊂ S. Therefore, for a finite m, there could be
some θ’s that are in S but not in Êm. Thirdly, the data Z, θ is
distributed in S according to the unknown p(θ|Z).

To quantify the estimation accuracy with its associated probability,
we define the ε approximation.

Definition IV.1: For any ε ∈ (0, 1), Êm is said to be an ε approxi-
mation of S if Prob{θ ∈ S and θ �∈ Êm} ≤ ε, where the probability
is with respect to p(θ|Z).

In this definition, Êm depends on a random sequence generated by
the MCMC algorithm and the probability can change with each real-
ization. Hence, to guarantee the desired confidence, we next modify
the above definition as follows.

Definition IV.2: For any ε, δ ∈ (0, 1), Êm is said to be an ε approx-
imation with confidence 1− δ if

Prob
{
Prob{θ ∈ S and θ �∈ Êm

}
≤ ε } ≥ 1− δ. (IV.15)

We note that for a pair ε, δ ∈ (0, 1), the above two-level probability
is always satisfied as m → ∞ since S ⊂ E ← Êm. The question is
what the minimum m is so that Êm satisfies the above two level
probability. To this end, by an argument similar to that in [8], we obtain
the following result.

Lemma IV.1: Consider S and Êm. Then, for any given ε, δ ∈ (0, 1),
the two level probability (IV.15) is satisfied, or Êm is an ε approxima-
tion of S with confidence 1− δ, if

m ≥ e

2(e− 1)

1

ε

(
q2 + 3q + 2 ln

1

δ

)
where q is the dimension of the unknown parameter vector and
e ≈ 2.71828 is the Euler number.

This result implies that, for given ε, δ ∈ (0, 1), Êm based on a
random sequence with length m generated by the MCMC algorithm
is an ε approximation of S with confidence 1− δ. We remark that the
same constant e/(e− 1) given in the above lemma also appeared in
other bounds for quite different problems (e.g., [1], [2]).

We now discuss the computational complexity of Êm, which is the
minimum volume ellipsoid containing Ŝm = {θ1, . . . , θm} generated
by the MCMC algorithm. The problem of computing an ellipsoid
containing a given finite number of points is a well-studied topic [6].
Let ξ ∈ (0, 1) be the level of accuracy for calculation, where we are
interested in finding (1 + ξ) volume approximation of Êm. Then, the
computational complexity bound on the calculation of Êm based on

Fig. 1. The three sets S, Ŝm, and Êm.

{θ1, . . . , θm} is O(mq3/ξ) [13]. Thus, for a given approximation
probability ε, the confidence interval 1− δ and the accuracy ξ, the
computational complexity of calculating Êm is bounded by

O

(
mq3

ξ

)
= O

(
e

2(e− 1)

1

ε

(
q2 + 3q + 2 ln

1

δ

)
q3

ξ

)

which is O(q5) for a given triple ε, δ, ξ ∈ (0, 1).

V. NUMERICAL SIMULATION

In this section, we investigate the feasible parameter set as a function
of the data length. The first example is two-dimensional, which is easy
to show visually. Note a major difficulty of nonlinear set-membership
identification is that the feasible parameter set may not be necessarily
connected. To test the algorithm, we consider the following example.

Example 1: Consider the nonlinear system described by

y(k) = sin (a · y(k − 1)) + exp (b · u(k − 1)) + v(k).

A simulation was conducted with θ = (a b)T = (0.5 − 0.2)T

and u(k) = cos(k/3) + sin(k) + 1. The unknown v(·) was i.i.d. in
[−1.5,1.5] with the density

pv(x) =

{
0, |x| ≥ 1.5
4
90
x+ 11

30
, −1.5 < x < 0

− 4
90
x+ 11

30
, 0 ≤ x < 1.5.

First, we consider n = 11 with v(k), k = 1, . . . , 11, given by

{−1.2282,−1.0203,−1.3625, 1.2555,−0.9576, 1.0038,
0.8109, 1.3315,−1.2472, 1.3763, 0.3508} .

Two random sequences of θi’s, i = 1, . . . ,m, were generated by the
algorithm with m = 200 and 500, respectively, both with σ2

η = 0.52.
In the top two diagrams of Fig. 1, the boundaries of the actual S are
shown by solid lines, the estimates Ŝ200 and Ŝ500 by dots, and the
corresponding minimum volume ellipsoids Ê200 and Ê500 by dash-
dot lines. The unknown feasible parameter set S when n = 11 is a
union of two disjoint sets. From the figure, the estimate Ŝm even at
m = 200 represents the unknown and disjoint S reasonably well. The
difference between S and Ŝm is smaller as m increases.

An important fact is that the feasible parameter set is a function of
the total data length n. The shape and size of S can change drastically
as n increases. Consider the same nonlinear system, but with a longer
data length for n = 41 and 101. The bottom two diagrams in Fig. 1
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Fig. 2. Zoomed-in figure for n = 101 and m = 500.

TABLE I
TRUE VALUE AND THE MINIMUM VARIANCE ESTIMATES (EXAMPLE 1)

TABLE II
TRUE VALUE AND THE MINIMUM VARIANCE ESTIMATES (EXAMPLE 2)

show the estimated feasible parameter set S for these cases obtained
by the method proposed in the technical note. In these diagrams, we
observe that S is smaller and is no longer a disjoint set. Fig. 2 is
the zoomed-in diagram of the actual S, the estimated Ŝ500, and the
minimum volume ellipsoid Ê500 for n = 101. The true θ and the
minimum variance estimates θ̂b,m for m = 500 and n = 41, 101 are
shown in Table I. Even with m = 500, the estimates are reasonable. As
expected, for larger m, the estimates become closer to the true ones.

Example 2: Consider the nonlinear system described by

y(k) = a · y(k − 1) + b (1− c · y(k − 1) · u(k − 1))2

· u(k − 1) + v(k)

where θ = (a, b, c)T = (0.5, 0.5,−0.3)T is the unknown parameter
vector to be estimated. The input and noise were taken to be the same
as before. The minimum variance estimates by the algorithm are given
in Table II for n = 100, m = 500, 1000, respectively. We observe that
m = 500 seems to be sufficient for this three dimensional example.

Note that both examples above illustrate the low-dimensional setting
for simple visualization and demonstration. The method however can
be applied to higher dimensional systems.

VI. CONCLUDING REMARKS

An MCMC approach is proposed in this technical note for nonlinear
system identification in a mixed set-membership and statistical setting.
The proposed algorithm defines estimates of the feasible parameter
set, the outer-bounding ellipsoid and the minimum variance estimate

by an MCMC generated sequence. Calculations of these estimates are
simple summations or convex problems which are relatively easy to
solve numerically. In future research, we would like to further pursue
the approach to address issues related to convergence rates of the algo-
rithm and to study from the viewpoint of the probabilistic approach.
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