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Abstract 

Recently, frequency-based least-squares (LS) estimators have found wide application in identifying aircraft flutter parameters. 

However, the frequency methods are often known to suffer from numerical difficulties when identifying a continuous-time model, espe-

cially, of broader frequency or higher order. In this article, a numerically robust LS estimator based on vector orthogonal polynomial is 

proposed to solve the numerical problem of multivariable systems and applied to the flutter testing. The key idea of this method is to 

represent the frequency response function (FRF) matrix by a right matrix fraction description (RMFD) model, and expand the numerator 

and denominator polynomial matrices on a vector orthogonal basis. As a result, a perfect numerical condition (numerical condition 

equals 1) can be obtained for linear LS estimator. Finally, this method is verified by flutter test of a wing model in a wind tunnel and real 

flight flutter test of an aircraft. The results are compared to those with notably LMS PolyMAX, which is not troubled by the numerical 

problem as it is established in z domain (e.g. derived from a discrete-time model). The verification has evidenced that this method, apart 

from overcoming the numerical problem, yields the results comparable to those acquired with LMS PolyMAX, or even considerably 

better at some frequency bands. 
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1 Introduction1 

As an aeroelastic phenomenon, aircraft flutter-
ing results from the coactions of three sorts of 
forces—aerodynamic, elastic, and inertial forces 
within a sufficiently short stretch of time, which 
leads to an unstable oscillation, and even more se-
rious, to a catastrophic structural failure[1].  

In order to prevent such a disaster from hap-
pening, a flutter test is always required in design 
and acceptance of an airplane[2-3]. The test usually 
includes identification of its modal parameters from 
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testing data, and prediction of the critical point of 
flutter through tracking damping ratio in the sub-
critical state. Obviously, an accurate and reliable 
estimation of modal parameters is essential for flut-
ter prediction. 

Several system identification methods have 
found wide application in flutter testing in both fre-
quency and time domains[4]. Recently, a frequency 
domain least-squares (LS) estimator has been de-
veloped to estimate flutter modal parameters[5]. It 
can improve the accuracy of modal parameters es-
timation when dealing with noisy data. However, 
the frequency methods are known with a poor nu-
merical conditioning when identifying a continu-
ous-time model, especially, of broader frequency 
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(more than 2 decades) or higher order (more than 
20). This numerical problem worsens both the mod-
eling performance and the model order selection 
capability. 

 Several attempts have been made in the past 
to eliminate numerical degeneracy in the frequency 
domain identification. They range from an appro-
priate scaling of frequency[6-7] to the decomposition 
of the numerator and denominator of the model 
equation on a separate base of orthogonal polyno-
mials[7-8]. Apart from imposing more limits on 
bandwidth and complexity, these efforts could not 
solve the numerical problems thoroughly.  

This article proposes a numerically robust fre-
quency-based estimator for flutter modal parameter 
identification, which uses vector orthogonal poly-
nomials to solve the numerical condition problem. 
Ref.[9] introduced the vector orthogonal polynomi-
als and applied them to single input single output 
(SISO) systems. This article attempts to extend this 
method to multivariable systems, and apply it to 
flutter modal parameter identification. Section 3 
provides a detailed description of the algorithm. 
Finally, the method is verified by the test data from 
a wind tunnel and real flight test. 

2 Problem Formulations 

Fig.1 depicts the simplified schema of the flut-
ter test. The test typically consists of measurements 
of the excitation applied to the structure and the 
response to the excitation. The aircraft aeroelastic 
system in a flutter test can be regarded as a linear 
dynamic system. The measured spectrum data are 
input U  and output Y  disturbed with noise. 0U , 

0Y  are the exact value of measurements, respec-
tively. UM , YM  are the measured noise in input 
and output, respectively. EN  denotes the unmeas-
ured excitation, such as atmospheric turbulence or 
airflow. 

The measurements U  and Y  are related to the 
exact values 0U  and 0Y  through 
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where ( j )kH  denotes the frequency response 
function (FRF) between the accelerometer output 
and the true excitation input at discrete Fourier 
transform (DFT) frequency k  ( 1,2, ,k N , the 
number of frequency lines), 0 ( j )kH  is the FRF 
from accelerometer response to atmospheric turbu-
lence. UN , YN  denote the noise in input and out-
put, respectively. During analyzing the experiment 
model, the process noise 0 E( j ) ( j )k kH N  is con-
sidered to be undesirable. 

 
Fig.1  A simplified model of flight flutter test. 

By use of an errors-in-variables (EIV) stochas-
tic noise model, the measured input/output (I/O) 
Fourier data can be represented by 

0( j ) ( j ) ( j )k k kZ Z Z        (3) 

where T T T[ ( j ) ( j )]k kZ U Y , T
0 0[ ( j )kZ U  

T T
0 ( j )]kY , T T T[ ( j ) ( j )]k kU YZ N N . 

Since in practice, the Fourier spectra are cal-
culated via a DFT, we can assume ( j )kZ  is a 
zero mean, complex normally distributed vector 
with the following covariance matrix 
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where ( j )kUC  and ( j )kYC  denote the input and 
output noise covariance respectively, and ( j )kUYC  
and ( j )kYUC  denote the input-output and output- 
input noise covariance, respectively. 

3 Theoretical Aspects 

3.1 Parametric model 

The flutter test is of a typical multiple input 
multiple output (MIMO) system, the relationship 
between outputs and inputs can be modeled in the 
frequency domain by means of a right matrix frac-
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tion description (RMFD) given by 
1( j ) ( ) ( )k k ks sH B A          (5) 

where o i( j ) N N
kH C  is the FRF. The matrix 

polynomials i i( ) N N
ksA C  and o i( ) N N

ksB C  
are defined by 
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jB C , jk ks , 1,k  
2, , N . The matrix coefficients jA  and jB  are the 
parameters to be estimated. The practical flutter sys- 
tem is a causal system, in which, for simplicity, it is 
reasonable to assume that a bn n n . 

3.2 Weighted least-squares (WLS) estimator  

Using Eq.(5), the relationship between the oth 
outputs o( 1,2, , )o N  and inputs is given by 

1( j ) ( ) ( )o k o k ks sH B A         (6) 

where ( j )o kH  is the oth row of the FRF 
( j )kH  and i1( ) N

o ksB C  is the oth row-vector 
of numerator polynomial matrix ( )ksB . Similar to 

( )ksB , ( )o ksB  is defined as 
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By replacing the model ( j )o kH  by the multi-
plication of measured FRF ˆ ( j )o kH  and the de-
nominator polynomial ( )ksA , the linearized 
(weighted) error equation becomes 

ˆ( j ) ( ( j ) ( ) ( ))o k o o k k o kW s sE H A B 0   (7) 

where oW  is an additional scalar frequency-weight- 
ing for each output. 

The relationship given by Eq.(7) exists at each 
output, which can be formulated as J 0  
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where  denotes the kronecker product. In prac-
tice, the so called normal equation HJ J 0  is 
commonly used, which leads to a more compact 
formulation and a reduction of computation time.  

However, in the case of continuous time mod-
els, ill-conditioned Jacobian and normal matrix will 
lower the numerical precision of LS estimator. To 
overcome this defect, the orthogonal polynomials or 
frequency scaling has been introduced, but neither 
of the methods is easily applicable to MIMO sys-
tem.  

3.3 LS estimator based on orthogonal polyno-
mials 

This section puts forward a numerically robust 
LS estimator for MIMO system, which solves the 
numerical condition problem on the base of vector 
orthogonal polynomials. 

The equation errors of all outputs are 
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where
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ghting matrix. 
The weighted linear LS problem can be settled 

by minimizing the cost function given by 
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where vec( )  denotes the vectorization of the ma-
trix formed by stacking the columns of matrix into a 
single column vector. 

According to kronecker product property 
Tvec( ) ( )vec( )JKL L J K  

Eq.(11) becomes 
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Defining vector polynomials 
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the corresponding cost function is 
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and 
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Clearly, Eq.(14) defines an inner product for 
the vector polynomials. 
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where ( )ksQ , ( )ksR  are 2
i o i( )N N N  dimensional 

vector polynomials. Therefore, in this setting, a 
polynomial vector ( )ksQ  should be found to have 
minimal cost function V with a strict degree n. To 
fix the problem uniquely, the last element of the 
parameter vectors , nA  is fixed to unit matrix. Of 
course, another option is permissible, for example, 
by choosing nB I . 

To solve the question, we expand ( )ksQ  
based on the orthogonal vector 
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where i  denotes the “weights”, and ( )i ksP  is the 
polynomial orthogonal matrix in terms of 
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With Eq.(16), the LS equation error ( )ksE 0  
now becomes 
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The orthogonality of ( )i ksP  implies that H  
HW W I . Hence, the LS equation is best condi-

tioned (condition number=1). 
The optimization problem is now reduced to 
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where ( )ksA  should be regarded as being monic. 
In order to minimize the cost function, let 0  

1 1n 0 , which minimizes Eq.(19) into 
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It is known that the highest degree coefficient 
matrix of nP  is upper triangular[14]
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Using Eqs.(21)-(22), can be obtained 
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where 11P , 12P , 22P  are block matrices. 
To normalize the solution, ( )ksA  is required 

to be monic, therefore, 
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The values of “×” need not be specified for the 
moment. From Eq.(25), the cost function can be 
decreased by letting  to equal zero, and 

2
i

1
11 vec( )NP I  to meet the normalized condition. 

The solution of LS estimator is  
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Obviously, how to construct the vector or-
thogonal basis is a very important for this approach. 
Owing to the limitation of space, more details 
would be omitted. Information about numerically 
stable and time-saving construction of vector or-
thogonal polynomial basis is available in Refs. 
[9-10]. 

4 Flutter Modal Parameters Identification 

4.1 Data preparation for identification 

Fig.2 depicts the typical setup of the flutter test. 

It is equipped with a flutter excitation system (FES), 
which is operated to add programmed digital signals 
such as sweeps to the control system actuator com-
mands for structural excitation. The responses are 
measured by accelerometers located in the aircraft 
nose, vertical and horizontal tails, and wingtips.  

In practice, the input signal for excitation is 
known beforehand and is free of noise. For simplic-
ity, only the errors in the output will be considered. 
As a result, the measured frequency response 

ˆ ( j )kH  is estimated by H1 estimator  
1ˆ ( j ) ( j ) ( j )k k kYU UUH S S  

where ( j )kYUS  and ( j )kUUS  are respectively 
the cross spectrum and auto spectrum of the input 
U  and output Y . 

 

Fig.2  Flutter test schematic diagram. 

4.2 Weighting 

An adequate choice of the frequency dependent 
weighting function oW  in Eq.(7) can improve the 
quality of the parameter estimates. The so called 
iterative quadratic maximum likelihood (IQML)[11] 
estimator based on the scalar weighting 

1 H 1 1/2( j ) tr(( ( )) ( j ) ( ))
o

m m m
o k k k kW s sHA C A  

is used to improve the efficiency of the LS estimates. 
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tr( )  is the trace operator, ( )m  is the mth iteration, 

oHC  is the covariance of oH . At every iteration 
step, the weighting should be updated using the 
calculated denominator of the previous step. 

Similar to the method developed by C. K. 
Sanathanan and J. Koerner[12], a developed iterative 
procedure is adopted to improve the estimates. It is 
observed that in the case of sufficiently high sig-
nal-to-noise ratios, the cost function of the IQML 
converges to the maximum likelihood (ML) cost 
function[13], although the estimator is inconsistent. 

4.3 Deriving modal parameters 

Let ( 1,2, , )rp r n  be the poles of the trans-
fer function, then the corresponding modal fre-
quency and damping ratio can be obtained as 

Im( )
2
Re( )    

r
r

r
r

r

pf

p
p

           (27) 

where Im( )  and Re( )  denote imaginary and real 
parts of the complex, respectively. The poles rp  
can be found from the denominator polynomial co-
efficients jA . The companion matrix c , made up 
of the coefficients, is given by[14] 

1 1 0

c

n

I

I

0 0

0 0

 

where 1
j n jA A . The poles rp  are given by 

the eigenvalues of c . Obviously, the modal pa-
rameters are derived from the matrix coefficients, 
and the attention will be focused on estimating the 
coefficients of FRF. 

5 Experiment Study 

5.1 Wind tunnel test 

A schematic layout of the wind tunnel test is 
shown in Fig.3. All tests were performed in a 
low-speed wind tunnel. A rectangular wing model 
with a trailing edge flap was mounted horizontally 
in the wind tunnel. The flutter mounting system 
consisted of a moving plate supported by a system 

of four circular rods and a centered flat-plate strut. 
An electrical motor installed on the lower sur-

face of the moving plate was used to drive the trail-
ing edge flap. The flap was connected to the motor 
by a shaft. The electromotor had an encoder to 
measure the actual angular position of the flap. The 
vibration of aeroelastic system was measured by 
four accelerometers mounted in each corner of the 
wing. The flutter testing was similar to that intro-
duced in Ref.[15].  

 

Fig.3  Schematic layout of the wind tunnel test system. 

In the wind tunnel test, the air force produced 
by trailing edge flap was used to excite the wing 
model. The input signals in these tests were at the 
trailing edge position and the output signal was the 
acceleration measured in the wing model.  

Digital signals were generated and sent to the 
trailing edge flap as input, and the responses meas-
ured by accelerometers were recorded. In the ex-
periments, the linear sweep signals (chirp signals) 
were employed for excitation. This kind of inputs 
made it possible to distinguish frequencies ranging 
from 1 Hz to 10 Hz when running tests. The sample 
frequency for data acquisition was 256 Hz. 

Figs.4-5 depict examples of input and output 
signals measured in one of the wind tunnel tests. 
Fig. 4 depicts the input flap deflection in degrees. It 
represents a linear sweep generated signal to the 
flap angle. Fig.5 shows a response of one acceler-
ometer. Fig.6 shows the FRFs for parameter identi-
fication, which were derived from all accelerome-
ters in the tests. 

The proposed numerically robust frequency- 
domain LS estimator was applied to data analysis. 
As a current standard tool in industry, the LMS Po-
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lyMax[16] method is also adopted for reference. 
Fig.7 shows the stabilization diagrams for numeri-
cally robust LS estimator method while Fig.8 shows 
for the PolyMax method. In these figures, the 
crosses represent the identified frequency location 
of the poles related to the model order indicated on 
the vertical axis. Since the two stabilization dia-
grams are similar, the results provided by the nu-
merically robust LS estimator are considerably 
clearer in comparison with the PolyMAX, especially 
in the vicinity of 7 Hz. 

 

Fig.4  Deflection of flap (linear sweep input). 

 

Fig.5  Measured noisy response of an accelerometer. 

 

Fig.6  FRFs for four accelerometers mounted in each corner 
of the wing. 

 

Fig.7  Stabilization diagram obtained from numerically 
robust LS estimator. 

 

Fig.8  Stabilization diagram obtained from PolyMAX. 

Table 1 lists some results in illustration of ex-
perimental data. The comparison of the identifica-
tion results shows that numerically robust LS esti-
mator can eliminate numerical degeneracy and yield 
results similar to those with PolyMAX. 

Table 1 Comparison of the identification results between 
numerically robust LS estimator and PolyMAX 

Numerically robust LS 
estimator  PolyMAX 

Mode
Frequency/ 

Hz 
Dampling/ 

%  
Frequency/ 

Hz 
Dampling/ 

% 

1 4.06 4.40  4.01 4.15 

2 5.61 2.61  5.56 2.90 

3 7.11 1.94  7.18 2.16 

4 8.58 3.43  8.62 3.30 

5.2 Flight flutter test 

This section intends to use real flight test to 
verify the effectiveness of the proposed algorithm. A 
large aircraft was excited by the outer aileron con-
trol signals with a sine sweep signal added in. As 
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inputs, either the sine sweep generated signal or the 
angles at the control surfaces can be chosen, while 
the measured acceleration responses at various loca-
tions of the airplane: fuselage, engines, and wings 
are chosen as outputs. Data from 8 accelerometers 
were analyzed. As an example, Fig.9 shows the re-
sponses measured at the wing tip. 

 

Fig.9  Measured responses from the accelerometer at 
the wing tip. 

While the test is interrupted by the heavy noise, 
an efficacious data prefilter in time-frequency do-
main becomes indispensable[17-18]. Then, the LS es-
timator using clear data is implemented for modal 
parameters identification. As regards the numerical 
problem caused by the aeroelastic systems of high 
or moderate order, the numerically robust approach 
is implemented to model the measured FRFs with a 
RMFD form n=21. Fig.10 depicts one of the meas-
ured FRFs together with synthesized transfer func-
tion. For comparison, the estimation obtained from 
PolyMAX is also provided. 

 

Fig.10  Comparison among measured response function, 
synthesized transfer function numerically robust LS 
estimator, and PolyMAX. 

As observed from Fig.10, the numerically ro-

bust approach proposed by the article is able to ac-
curately model the measured response function, es-
pecially the three lightly damping modes. Its per-
formance is even superior to that of PolyMax. This 
is owing to the reasonable condition number and the 
“optimal” weighting updated by iteration, which 
improve the quality of the estimation. In contrast, 
PolyMax is a non-iterative approach with a larger 
condition number. 

6 Conclusions 

This article presents a numerically robust LS 
estimator for MIMO system and applies it to analy-
sis of data from flutter tests. The numerical condi-
tion problem of LS estimator is solved perfectly 
with condition number equals 1 based on vector 
orthogonal polynomials. The real measurement re-
sults evidence that the proposed method is of great 
use in flutter modal parameters identification. 
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