
Chapter 1

Fuzzy Sets

This chapter begins with a brief review of classical sets in order to
facilitate the introduction of fuzzy sets. Next the concept of membership
function is explained. It defines the degree to which an element under
consideration belongs to a fuzzy set. Fuzzy numbers are described as
a particular case of fuzzy sets. Fuzzy sets and fuzzy numbers will be
used in fuzzy logic to model words such as profit, investment, cost,
income, age, etc. Fuzzy relations together with some operations on fuzzy
relations are introduced as a generalization of fuzzy sets and ordinary
relations. They have application in database models. Fuzzy sets and
fuzzy relations play an important role in fuzzy logic.

1.1 Classical Sets: Relations and Functions

Classical sets

This section reviews briefly the terminology, notations, and basic prop-
erties of classical sets, usually called sets.

The concept of a set or collection of objects is common in our every-
day experience. For instance, all persons listed in a certain telephone
directory, all employees in a company, etc. There is a defining prop-
erty that allows us to consider the objects as a whole. The objects in
a set are called elements or members of the set. We will denote ele-
ments by small letters a, b, c, . . . , x, y, z and the sets by capital letters
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A,B,C, . . . ,X, Y, Z. Sets are also called ordinary or crisp in order to be
distinguished from fuzzy sets.

The fundamental notion in set theory is that of belonging or mem-
bership. If an object x belongs to the set A we write x ∈ A; if x is not
a member of A, we write x 6∈ A. In other words for each object x there
are only two possibilities: either x belongs to A or it does not.1

A set containing finite number of members is called finite set; oth-
erwise it is called infinite set. We present two methods of describing
sets.

Listing method

The set is described by listing its elements placed in braces; for example
A = {1, 3, 6, 7, 8}, B = {business, finance, management}. The order in
which elements are listed is of no importance. An element should be
listed only once.

Membership rule

The set is described by one or more properties to be satisfied only by
objects in the set:

A = {x | x satisfies some property or properties}.
This reads: “A is the set of all x such that x satisfies some property
or properties.” For example R = {x | x is real number} reads: “R is
the set of all x such that x is a real number”; R+ = {x|x ≥ 0, x ∈ R}
reads “R+ is the set of all x which are nonnegative real numbers.”

Universal set

The set of all objects under consideration in a particular situation is
called universal set or universe; it will be denoted by U .

Empty set

A set without elements is called empty; it is denoted by φ.

Interval

The set of all real numbers x such that a1 ≤ x ≤ a2, where a1 and a2 are
real numbers, form a closed interval [a1, a2] = {x | a1 ≤ x ≤ a2, x ∈ R}
with boundaries a1 and a2. It is also called interval number.
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Equal sets

Sets A and B are equal , denoted by A = B, if they have the same
elements.

Subset

The set A is a subset of the set B (A is included in B), denoted by
A ⊆ B, if every element of A is also an element of B. Every set is
subset of itself, A ⊆ A. The empty set φ is a subset of any set. It is
assumed that each set we are dealing with is a subset of a universal set
U .

Proper subset

A is a proper subset of B, denoted A ⊂ B, if A ⊆ B and there is
at least one element in B which does not belong to A. For instance
{a, b} ⊂ {a, b, c}. If A ⊆ B and B ⊆ C, then A ⊆ C.

Intersection

The intersection of the sets A and B, denoted by A ∩ B, is defined by

A ∩ B = {x | x ∈ A and x ∈ B}; (1.1)

A ∩ B is a set whose elements are common to A and B.

Union

The union of A and B , denoted by A ∪ B, is defined by

A ∪ B = {x | x ∈ A or x ∈ B}; (1.2)

A∪B is a set whose elements are in A or B, including any element that
belongs to both A and B.

Disjoint sets

If the sets A and B have no elements in common, they are called disjoint.

Complement

The complement of A ⊂ U , denoted by A, is the set

A = {x ∈ U | x 6∈ A}. (1.3)



4 Chapter 1. Fuzzy Sets

The complement of a set consists of all elements in the universal set
that are not in the given set.

Example 1.1

Given the sets

A = {1, 2, 3, 4}, B = {1, 3, 5, 6}, U = {1, 2, 3, 4, 5, 6, 7},

then using (1.1)–(1.3) we find

A ∩ B = {1, 3}, A ∪ B = {1, 2, 3, 4, 5, 6}, A = {5, 6, 7}, B = {2, 4, 7}.

2

Convex sets

Consider the universe U to be the set of real numbers R.
A subset S of R is said to be convex if and only if, for all x1, x2 ∈ S

and for every real number λ satisfying 0 ≤ λ ≤ 1, we have

λx1 + (1 − λ)x2 ∈ S.

For example, any interval S = [a1, a2] is a convex set since the above
condition is satisfied; [0, 1] and [3, 4] are convex, but [0, 1]∪ [3, 4] is not.

Venn diagrams

Sets are geometrically represented by circles inside a rectangle (the uni-
versal set U). In Fig. 1.1 are shown the sets A ∩ B and A ∪ B.

A B

A B

A B

BA∩ ∪
Fig. 1.1. Venn diagrams for A ∩ B(intersection), A ∪ B(union).

Ordered pairs

It was noted that the order of the elements of a set is not important.
However there are cases when the order is important. To indicate that
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a set or pair of two elements a and b is ordered, we write (a, b), i.e. use
parentheses instead of braces; a is called first element of the pair and b
is called second element.

Cartesian product

Cartesian product (or cross product) of the sets A and B denoted A×B
is the set of ordered pairs

A × B = {(a, b) | a ∈ A, b ∈ B}. (1.4)

Example 1.2

(a) Given
A = {1, 2, 3}, B = {1, 2},

then according to (1.4) we find

A × B = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)};

geometrically it is presented on Fig. 1.2 (a).
(b) If X,Y = R, the set of all real numbers, then

X × Y = {(x, y)|x ∈ X, y ∈ Y } = R × R

is the set of all ordered pairs which form the cartesian plane xy (see
Fig. 1.2(b)).

-
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-
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(a) (b)

Fig. 1.2. (a) Cartesian product {1, 2, 3} × {1, 2}; (b) Cartesian plane.
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Relations

The concept of relation is very general. It is based on the concepts of
ordered pair (a, b), a ∈ A, b ∈ B, and cartesian product of the sets A
and B.

A relation from A to B (or between A and B) is any subset < of
the cartesian product A × B. We say that a ∈ A and b ∈ B are related
by <; the elements a and b form the domain and range of the relation,
correspondingly. Since a relation is a set, it may be described by either
the listing method or the membership rule. The relation < is called
binary relation since two sets, A and B, are related.

Example 1.3

Let A = {x1, x2, x3} and B = {1, 2, 3, 4}.

We list some binary relations generated by A and B:

<1 = {(x1, 1), (x2, 1), (x3, 4)},
<2 = {(x1, 2), (x1, 3)}, <3 = {(x2, 2), (x3, 1)},
<4 = {(x1, 1), (x1, 2), (x1, 3), (x1, 4), (x2, 1), (x4, 1)}

are relations from A to B;

<5 = {(1, x2), (2, x3), (3, x1)}, <6 = {(1, x1), (2, x1)},
<7 = {(1, x1), (1, x2), (1, x4)}, <8 = {(2, x1), (3, x3)}

are relations from B to A; the empty set φ is a relation; the cross
product A × B is a relation from A to B and the cross product B × A
is a relation from B to A.

2

Functions

A function f is a relation < such that for every element x in the domain
of f there corresponds a unique element y in the range of f . For instance
the relations in Example 1.2 are not functions.

We often say that f maps x onto y; y is the image of x under f .
Then we can write f : x → y. However, it is customary to use the
notation y = f(x).
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Generalization

The notions of ordered pair, Cartesian product, relation, and function
can be generalized for higher dimensions than two. For instance when
n = 3 we have:

Ordered triple (a, b, c);
Cartesian product

A × B × C = {(a, b, c)|a ∈ A, b ∈ B, c ∈ C};

Relation from A × B to C is any subset < of A × B × C.
Function z = f(x, y) is a relation such that for every pair (x, y) in

the domain of f there corresponds a unique element z in its range.

Characteristic Function

The membership rule that characterizes the elements (members) of a set
A ⊂ U can be established by the concept of characteristic function (or
membership function) µA(x) taking only two values, 1 and 0, indicating
whether or not x ∈ U is a member of A:

µA(x) =

{

1 for x ∈ A,
0 for x 6∈ A.

(1.5)

Hence µA(x) ∈ {0, 1}. Inversely, if a function µA(x) is defined by (1.5),
then it is the characteristic function for a set A ⊂ U in the sense that
A consists of the values of x ∈ U for which µA(x) is equal to 1. In other
words every set is uniquely determined by its characteristic function.

The universal set U has for membership function µU(x) which is
identically equal to 1, i.e. µU (x) = 1. The empty set φ has for mem-
bership function µφ(x) = 0.

Example 1.4

Consider the universe U = {x1, x2, x3, x4, x5, x6} and its subset A,

A = {x2, x3, x5}.
Only three of the six elements in U belong A. Using the notation (1.5)
gives

µA(x1) = 0, µA(x2) = 1, µA(x3) = 1,

µA(x4) = 0, µA(x5) = 1, µA(x6) = 0.
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Hence the characteristic function of the set A is

µA(x) =

{

1 for x = x2, x3, x5,
0 for x = x1, x4, x6;

The set A can be represented as

A = {(x1, 0), (x2, 1), (x3, 1), (x4, 0), (x5, 1), (x6, 0)}.
2

Example 1.5

Let us try to use crisp sets to describe tall men. Consider for instance
a man as tall if his height is 180 cm or greater; otherwise the man is
not tall. The characteristic function of the set A = {tall men} then is

µA(x) =

{

1 for 180 ≤ x,
0 for 160 ≤ x < 180.

It is shown in Fig. 1.3, where the universe is U = {x | 160 ≤ x ≤ 200}.
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Fig. 1.3. Membership function of the set tall men.

Clearly this description of the set of tall men is not satisfactory
since it does not allow gradation. The word tall is vague. For instance,
a person whose height is 179 cm is not tall as well as a person whose
height is 160 cm. Yet a person whose height is 180 is tall and so is
a person with height 200 cm. Also the above definition introduces a
drastic difference between heights of 179 cm and 180 cm, thus fails to
describe realistically borderline cases.2

2

The concept of characteristic function introduced here will facili-
tate the understanding of the concept fuzzy set, the subject of the next
section.
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1.2 Definition of Fuzzy Sets

We have seen that belonging or membership of an object to a set is
a precise concept; the object is either a member to a set or it is not,
hence the membership function can take only two values, 1 or 0. The set
tall men in Example 1.5 illustrates the need to increase the describing
capabilities of classical sets while dealing with words.

To describe gradual transitions Zadeh (1965), the founder of fuzzy
sets, introduced grades between 0 and 1 and the concept of graded
membership.

Let us refer to Example 1.4. Each of the six elements of the universal
set U = {x1, x2, x3, x4, x5, x6} either belongs to or does not belong to
the set A = {x2, x3, x5}. According to this, the characteristic function
µA(x) takes only the values 1 or 0. Assume now that a characteristic
function may take values in the interval [0, 1]. In this way the concept
of membership is not any more crisp (either 1 or 0), but becomes fuzzy
in the sense of representing partial belonging or degree of membership.

Consider a classical set A of the universe U . A fuzzy set A is defined
by a set or ordered pairs, a binary relation,

A = {(x, µA(x)) | x ∈ A,µA(x) ∈ [0, 1]}, (1.6)

where µA(x) is a function called membership function; µA(x) specifies
the grade or degree to which any element x in A belongs to the fuzzy set
A. Definition (1.6) associates with each element x in A a real number
µA(x) in the interval [0, 1] which is assigned to x. Larger values of
µA(x) indicate higher degrees of membership.3

Let us express the meaning of (1.6) in a slightly modified way. The
first elements x in the pair (x, µA(x)) are given numbers or objects of
the classical set A; they satisfy some property (P ) under consideration
partly (to various degrees). The second elements µA(x) belong to the
interval (classical set) [0, 1]; they indicate to what extent (degree) the
elements x satisfy the property P .

It is assumed here that the membership function µA(x) is either
piecewise continuous or discrete.

The fuzzy set A according to definition (1.6) is formally equal to
its membership function µA(x). We will identify any fuzzy set with
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its membership function and use these two concepts as interchangeable.
Also we may look at a fuzzy set over a domain A as a function mapping
A into [0, 1].

Fuzzy sets are denoted by italic letters A,B, C, . . . and the corre-
sponding membership functions by µA(x), µB(x), µC(x), . . ..

Elements with zero degree of membership in a fuzzy set are usually
not listed.

Classical sets can be considered as a special case of fuzzy sets with
all membership grades equal to 1.

A fuzzy set is called normalized when at least one x ∈ A attains
the maximum membership grade 1; otherwise the set is called nonnor-
malized. Assume the set A is nonnormalized; then max µA(x) < 1. To
normalize the set A means to normalize its membership function µA(x),

i.e. to divide it by max µA(x), which gives µA(x)
max µA(x) .

A is called empty set labeled φ if µA(x) = 0 for each x ∈ A.
The fuzzy set A = {(x1, µA(x1))}, where x1 is the only value in

A ⊂ U and µA(x1) ∈ [0, 1], is called fuzzy singleton.
While the set A is a subset of the universal set U which is crisp, the

fuzzy set A is not.
Instead of (1.6), some authors use the notation

A = {µA(x)/x, x ∈ A,µA(x) ∈ [0, 1]},

where the symbol / is not a division sign but indicates that the top
number µA(x) is the membership value of the element x in the bottom.

Example 1.6

Consider the fuzzy set

A = {(x1, 0.1), (x2, 0.5), (x3, 0.3), (x4, 0.8), (x5, 1), (x6, 0.2)}

which also can be represented as

A = 0.1/x1 + 0.5/x2 + 0.3/x3 + 0.8/x4 + 1/x5 + 0.2/x6;

it is a discrete fuzzy set consisting of six ordered pairs. The elements
xi, i = 1, . . . , 6, are not necessary numbers; they belong to the classical
set A = {x1, x2, x3, x4, x5, x6} which is a subset of a certain universal
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set U . The membership function µA(x) of A takes the following values
on [0, 1]:

µA(x1) = 0.1, µA(x2) = 0.5, µA(x3) = 0.3,
µA(x4) = 0.8, µA(x5) = 1, µA(x6) = 0.2.

The following interpretation could be given to µA(xi), i = 1, · · · , 6.
The element x5 is a full member of the fuzzy set A, while the element
x1 is a member of A a little (µA(x1) = 0.1 is near 0); x6 and x3 are a
little more members of A; the element x4 is almost a full member of A,
while x2 is more or less a member of A.

The fuzzy set A can be given also by the table

A 4
=

x1 x2 x3 x4 x5 x6

0.1 0.5 0.3 0.8 1 0.2

where the symbol
4
= means “is defined by.”

Now we specify in two different ways the elements xi in A:
(a) Assume that xi, i = 1, · · · , 6, are integers, namely, x1 =

1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6; they belong to the set
A = {1, 2, 3, 4, 5, 6}, a subset of the universe U = N , the set of all
integers. The fuzzy set A becomes

A = {(1, 0.1), (2, 0.5), (3, 0.3), (4, 0.8), (5, 1), (6, 0.2)};

its membership function µA(x) shown in Fig. 1.4 by dots is a discrete
one.

(b) Assume now that xi, i = 1, . . . , 6, are friends of George whose
names are as follows: x1 is Ron, x2 is Ted, x3 is John, x4 is Joe, x5 is
Tom, and x6 is Sam. They form a set of friends of George,

A = {Ron, Ted, John, Joe, Tom, Sam},

a subset of the universe U (all friends of George). The fuzzy set A here
expresses closeness of friends of George on A ⊆ U :

A = {(Ron, 0.1), (Ted, 0.5), (John, 0.3), (Joe, 0.8), (Tom, 1), (Sam, 0.2)}.
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Fig. 1.4. Fuzzy set A = {(1, 0.1), (2, 0.5), (3, 0.3), (4, 0.8), (5, 1), (6, 0.2)}.
2

Example 1.7

Let us describe numbers close to 10.
(a) First consider the fuzzy set

A1 = {(x, µA1
(x)) | x ∈ [5, 15], µA1

(x) =
1

1 + (x − 10)2
},

where µA1
(x) shown in Fig. 1.5 is a continuous function.

The fuzzy set A1 represents real numbers close to 10.
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(x)

5 15

Fig. 1.5. Real numbers close to 10.
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(b) Integers close to 10 can be expressed by the finite fuzzy set
consisting of seven ordered pairs

A2 = {(7, 0.1), (8, 0.3), (9, 0.8), (10, 1), (11, 0.8), (12, 0.3), (13, 0.1)}.

The membership function of A2 is shown on Fig 1.6 by dots; it is a
discrete function.

0

1

µ

7 8 9 10 11 12 13 x

0.3

0.8

0.1

Fig. 1.6. Integers close to 10.

2

Example 1.8

We have seen in Example 1.5 that the description of tall men by
classical sets is not adequate. Now we employ for the same purpose
the fuzzy set T = {(x, µT (x))}, where x measured in cm belongs to the
interval [160, 200] and µT (x) is defined by (see Fig 1.7)

µT (x) =

{

1
2(30)2 (x − 140)2 for 160 ≤ x ≤ 170,

− 1
2(30)2 (x − 200)2 + 1 for 170 ≤ x ≤ 200.

The membership function µT (x) is a continuous piecewise-quadratic
function. The numbers on the horizontal axis x give height in cm and
the vertical axis µ shows the degree to which a man can be labeled tall.
According to the graph in Fig. 1.7, if a person’s height is 160 cm, the
person is a little tall (degree 0.22), 180 cm stands for almost tall (degree
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