Applied Mathematical Modelling 37 (2013) 6758-6779

Contents lists available at SciVerse ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

A discrete artificial bee colony algorithm for the no-idle
permutation flowshop scheduling problem with the total
tardiness criterion

@ CrossMark

M. Fatih Tasgetiren **, Quan-Ke Pan®, P.N. Suganthan ¢, Adalet Oner?

?Industrial Engineering Department, Yasar University, Bornova, Izmir, Turkey
b College of Computer Science, Liaocheng University, PR China
€School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

ARTICLE INFO ABSTRACT

Article history:

Received 11 October 2010

Received in revised form 7 January 2013
Accepted 18 February 2013

Available online 27 February 2013

In this paper, we present a discrete artificial bee colony algorithm to solve the no-idle per-
mutation flowshop scheduling problem with the total tardiness criterion. The no-idle per-
mutation flowshop problem is a variant of the well-known permutation flowshop
scheduling problem where idle time is not allowed on machines. In other words, the start
time of processing the first job on a given machine must be delayed in order to satisfy the
no-idle constraint. The paper presents the following contributions: First of all, a discrete
artificial bee colony algorithm is presented to solve the problem on hand first time in

Keywords:
Artificial bee colony algorithm

No-idle permutation flowshop scheduling
problem

Metaheuristics

Evolutionary algorithms

Genetic algorithm

the literature. Secondly, some novel methods of calculating the total tardiness from make-
span are introduced for the no-idle permutation flowshop scheduling problem. Finally, the
main contribution of the paper is due to the fact that a novel speed-up method for the
insertion neighborhood is developed for the total tardiness criterion. The performance of
the discrete artificial bee colony algorithm is evaluated against a traditional genetic

algorithm. The computational results show its highly competitive performance when com-
pared to the genetic algorithm. Ultimately, we provide the best known solutions for the
total tardiness criterion with different due date tightness levels for the first time in the
literature for the Taillard’s benchmark suit.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a flowshop, the processing order for all jobs is the same. Furthermore, jobs are assumed to a permutation and therefore,
once a permutation is fixed for all jobs on the first machine, this permutation is maintained for all machines, which is so
called a permutation flowshop scheduling problem (PFSP). There exist several performance measures when dealing with
scheduling in a flowshop. The makespan criterion is the most commonly studied performance measure in the literature
[1,2]. On the other hand, due date based other objectives have not been attracted enough interest from the researchers until
recently. Among due-date based performance measures, tardiness minimization focuses on finding schedules in order to sat-
isfy the external due dates promised to customers. Therefore, it is of significance and importance to real life considerations
[3,4].

This paper is basically concerned with solving a variant of the PFSP where no-idle times are allowed on machines. The
no-idle constraint refers to an important practical situation in the production environment, where expensive machinery

* Corresponding author.
E-mail addresses: fatih.tasgetiren@yasar.edu.tr (M.F. Tasgetiren), panquanke@gmail.com (Q.-K. Pan), epnsugan@ntu.edu.sg (P.N. Suganthan),
adalet.oner@yasar.edu.tr (A. Oner).

0307-904X/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.apm.2013.02.011

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.apm.2013.02.011&domain=pdf
http://dx.doi.org/10.1016/j.apm.2013.02.011
mailto:fatih.tasgetiren@yasar.edu.tr
mailto:panquanke@gmail.com
mailto:epnsugan@ntu.edu.sg
mailto:adalet.oner@yasar.edu.tr
http://dx.doi.org/10.1016/j.apm.2013.02.011
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6759

is employed [5]. Idling on such expensive machinery is often not desirable. For instance, the steppers employed in the pro-
duction of integrated circuits through photolithography are clear examples. Some other examples arise in industries where
less expensive machinery is employed. However, they cannot be stopped and restarted. For example, ceramic roller kilns
consume large quantities of natural gas when it is in operation. Idling cannot be an option in this case since it takes several
days to stop and to restart the kiln because of a very large thermal inertia. In such cases, idling should be avoided. Another
practical example is due to the furnace in the fiberglass processing, where glass batches are reduced to molten. Since it takes
three days to heat the furnace back to the required temperature of 2800 ‘F, the furnace should stay on during the entire pro-
duction season. In addition to the above, a three-machine flowshop production of engine blocks in a foundry is presented in
[6]. It includes the casting of sand molds and sand cores. The molds are filled up with metal in fusion and the cores prevent
the metal to fill some species in the mold. The casting machines work without idle times due to both economic and tech-
nological constraints.

In a no-idle permutation flowshop scheduling (NIPFS) problem, each machine has to process jobs without any interrup-
tion from the start of processing the first job to the completion of the last job. Therefore, when needed, the start of processing
the first job on a given machine must be delayed in order to meet the no-idle requirement. Here we denote it with the well-
known three fold notation of F,;/prmu, no - idle/Cy.x. The computational complexity of the F,,,/prmu, no - idle/Cpax problem is
briefly commented in [7]. The NP-Hardness of the F3/prmu, no - idle/C.x problem was proved by [6,8]. Therefore, it has a
significant importance both in theory and engineering applications to develop effective and efficient approaches for the
problem discussed in this paper.

In spite of its practical importance, the F,,/prmu, no - idle/Cn.x problem has not attracted much attention in the literature
[9]. To the best of our knowledge, a polynomial time algorithm for solving the F2/prmu, no - idle/3"C; problem optimally was
presented in [10]. The makespan criterion was studied for the first time in [11] whereas heuristic approaches for the general
m - machine no-idle PFSP with the makespan criterion were examined in [12]. A branch and bound (B&B) method is also
presented by [8] for the general m-machine no-idle PFSP with the makespan criterion.

Some mistakes in the paper by [10] were reported in [13]. The F3/prmu, no - idle/C,.x problem was studied in [14]. The
same problem was also studied in [6] where a lower bound and an efficient heuristic are presented. This new heuristic favors
the earlier method of the authors [15]. They published this work later on in [16]. Kamburowski in [17] further enhanced the
idea in [6] by proposing a network representation. A heuristic for the the F3/prmu, no - idle/Cy.x problem based on the trav-
eling salesman problem (TSP) was proposed in [16]. The F2/prmu, no - idle/C,.x and the F,,/prmu, no - idle/Cp,.x problems
were studied in two similar papers, respectively [18,19]. Kalczynski and Kamburowski in [20] developed a constructive
heuristic, named KK heuristic, for the F,,/prmu, no - idle/Cymax problem with a time complexity of O(n*m). The authors also
presented an adaptation of the NEH heuristic [21] for the NIPFS problem. In addition, Kalczynski and Kamburowski studied
the interactions between the no-idle and no-wait flowshops in [20], too. Recently, Baraz and Mosheiov introduced an im-
proved two-stage greedy algorithm consisting of a simple greedy heuristic and an improvement step based on the APl meth-
od in [9].

In recent years, meta-heuristics have attracted increasing attention to solve scheduling problems owing to the fact that
they are able to provide high quality solutions with reasonable computational effort [22]. In addition to the above literature,
in two similar papers, Pan and Wang proposed a discrete differential evolution (DDE) and a discrete particle swarm optimi-
zation (DPSO) algorithms for the same problem in [23,24]. In both papers, a speed-up scheme for the insertion neighborhood
is proposed, which reduces the computational complexity of a single insertion neighborhood scan from 0(n*m) to O(n?m)
when the insertion is carried out in order. The speed-up they proposed is based on the very well-known accelerations pre-
sented by [25] for the insertion neighborhood for the PFSP. In fact, both in DDE and DPSO, an advanced local search form,
which is an iterated greedy (IG) algorithm proposed in [26] is employed as a local search. Both DDE and DPSO used the
well-known benchmark suite of [27] by treating them as the NIPFS instances in order to test the results. In both papers,
the authors tested the proposed methods against the heuristics in [9,20]. More recently, an IG algorithm for the NIPFS
problem with the makespan criterion was presented in [5]. They employed their own benchmark suite and examined the
performance of IG in detail against the existing heuristics and meta-heuristics from the literature. To the best of our knowl-
edge, this paper is the first to presents a discrete artificial bee colony algorithm to study the NIPFS problem with the total
tardiness criterion in the literature.

In general, swarm intelligence is based on collective behavior of self-organized systems [28]. As a typical example of
swarm intelligence, the bee swarming around her hive has received significant interest from researchers. Recently, by mod-
eling the specific intelligent behaviors of honey bee swarms, an artificial bee colony (ABC) algorithm is developed by Karab-
oga in [28-32] to optimize multi-variable and multi-modal continuous functions. Numerical comparisons demonstrated that
the performance of the ABC algorithm is competitive to other population-based algorithms with an advantage of employing
fewer control parameters [28-32]. Recently, a discrete version of ABC algorithm is applied to the lot-streaming flowshop
scheduling problem in [33,34]. Since there is no published work to deal with the NIPFS problem with the total tardiness cri-
terion by using the ABC algorithm, we present a novel discrete ABC (DABC) algorithm as well as a genetic algorithm to be
compared for solving the NIPFS problem with the total tardiness criterion in this paper.

The remaining paper is organized as follows. Section 2 introduces the NIPFS problem. Section 3 presents the DABC
algorithm in detail while Section 4 briefly explains the traditional GA. Section 5 discusses the computational results over
benchmark problems. Finally, Section 6 summarizes the concluding remarks.

6760 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779
2. No-idle permutation flowshop scheduling problem algorithm

The no-idle permutation flow shop scheduling problem with n jobs and m machines can be defined as follows. Each of n
(j=1,2,...,n)jobs will be sequenced through m machines (k =1, 2, ..., m). Operation o(j, k) corresponds to the processing of
job j on machine k during an uninterrupted processing time p(j, k), where its setup time is included in it, whereas d(j) denotes
the due date of job j. At any time, each machine can process at most one job and each job can be processed on at most one
machine. The sequence in which the jobs are to be processed is the same for each machine. To follow the no-idle restriction,
each machine must process jobs without any interruption from the start of processing the first job to the completion of
processing the last job. In other words, there must be no idle time between the processing of any consecutive operations
on each machine. The aim is then to find a schedule such that the processing order of jobs is the same on each machine
and its total tardiness is minimized. We follow Pan and Wang in [23,24] for the formulation of the NIPFS problem with
the makespan criterion and extend it to the total tardiness criterion. The formulation of total tardiness variant consists of
forward and backward passes as well as their combined method to facilitate the speed-up method, which are explained
and well illustrated with examples below.

2.1. Forward pass calculation

Let a job permutation © = {my, 7, ..., 7,} represent the schedule of jobs to be processed, and 7} = {7y, 7, ..., 7;} be a
partial schedule of 7 such that 1 <j < n. In addition, F(n]’?', k,k + 1) refers to the lower bound for the minimum difference be-
tween the completion of processing the last job of 7rjE on machines k + 1 and k, which is restricted by the no-idle constraint.
Then, F(7},k,k + 1) can be computed as follows:

F(n§,k,k+1)=p(m,k+1) j=1,2,....m—1 (1)
F(nf,k,k+1) :max{F(nj.{],k,kH) fp(nj,k),O}ij(nj,kJrl) j=2.3,...nandk=1,2,....m—1 2)
Then, the makespan of job 7, on machine m can be given by
m-—1 n
C(7tn,m) = Crmax (15) = > _F(nk k. k+1) +> p(m;, 1) (3)
k=1 =

In fact, the Eq. (3) is a completion time of job 7, on the last machine m. Hence, the completion time of job 7; on the last
machine m can be computed by subtracting the processing time of job i + 1 from the completion time of job i + 1 on the last
machine m as follows:

C(Tcﬁm) :C(nj+17m)_p(nj+lym)7 i=n-1,n-2,...,1 (4)

Then, the total tardiness is given by:
n
T =" (max(C(m;,m) - d(r),0)) (5)
j=1

An example instance for 3-job 3-machine problem is given in Table 1. Through Figs. 1a-1d, the forward calculation is illus-
trated in detail with a permutation, 7 = {1, 2, 3}, as well as with the due date tightness factor of 7 = 1.

F(m, k,k+1) =p(mi,k+1), k=1,2,....m-1
F(TEE,],Z) =p(1,2)=1
F(nt.2,3) = p(1,3) =3

F(nf,k,k+ 1) — max {F(nﬁl,k, k+ 1) fp(nj,k),O} +p(m,k+1), j=2andk=1,2

Table 1
An example instance.
Job(j) Machine(k) Due Date
1 2 3 dj =7 x L P
Dij 4 1 3 8
Daj 2 3 3 8
P3j 2 2 3 7

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

Machine A
3 1
2 1
1 1
-t
Flrf 2.3)
Flzf12)
Fig. 1a. Computation of F(7%, k, k + 1).
Machine A
1 2
2 | 1 2
1 1 | 2
-
Flzf12)| Flzf 23)
Fig. 1b. Computation of F(n§, k,k + 1).
Machine g
1 E
2 | 1 2 3
1 1 | 2 3
>
Flf12) | plef 23)
et -t g
Fig. 1c. Computation of F(n§, k,k + 1).
Machine A
M, 1 2 | 3
M, | 1 2 3
M, 1 | 2 3 >
> plid) Flzf12) | Flxf23)
et g g -
. Cue)

Fig. 1d. Computation of Cpax(7).

t

6761

6762 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779
F(n5,1,2) = max {F(n},1,2) — p(72,1),0} + p(72, 2)
F(n%,1,2) = max {F(n{,1,2) — p(2,1).0} +p(2,2)
F(n%,1,2) = max {(1-2),0} +3=3
F(n%,2,3) = max {F(n},2,3) — p(7,2),0} + p(72,3)
F(n%,2,3) = max {F(n},2,3) — p(2,2),0} +p(2,3)
F(n§,2,3) =max{(3-3),0}+3=3
F(nf,k,k+l) :max{ (0k, k+1> p(nj,k),0}+p(nj,k+1) j=3andk=1,2
F(n§,1,2) = max {F(n5,1,2) — p(n3,1),0} + p(73,2)
F(n§,1,2) = max {F(n5,1,2) — p(3,1),0} +p(3,2)
F(n,1,2) = max{(3-2),0} +2 =3
F(n§,2,3) = max {F(n5,2,3) — p(73,2),0} + p(73,3)
F(n§,2,3) = max {F(n5,2,3) — p(3,2),0} +p(3,3)

F(n5,2,3) = max{(3 - 2),0} +3 =4
3-1 3
C(m3,3) =Y F(n5,kk+1)+> p(m;,1)
k=1 j=1

C(m3,3) = F(m§,1,2) + (n5,2,3) + p(1,1) + p(2,1) + p(3,1)
C(m3,3)=3+4+4+2+2=15

C(my,3) = C(m3,3) — p(73,3)

C(m,3)=15-3=12

C(m,3) = C(m2,3) — (72, 3)

C(m,3)=12-3=9

T= imax C(m;,3) - d(m;),0))

T= :;ax(qnl ,3) —d(11),0) + max(C(7,, 3) — d(712), 0) + max(C(73,3) — d(3), 0)

T = max(9 — 8,0) + max(12 — 8,0) + max(15—7,0)=1+4+8 =13

2.2. Backward pass calculation

Let nf = {m;, 7j;1,...,Ta} denote an another partial schedule of 7 such that 1<j<n. And let E(nif, k,k + 1) be the lower
bound for the minimum delay between the start of processing the first job of 7 on machines k + 1 and k, which is restricted
by the no-idle constraint. Then, E(nf,k,k + 1) can be computed as follows:

E(nf, k,k+1) =p(m,. k), k=1,2,....m—1 6)

E(nf,k,k—s—l):max{(M,kk—s—l) (n,-,k+1),o}+p(nj,k), j=n-1,n-2,...,1andk=1,2,....m-1 (7)

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6763

The completion time C(7;, m) of job 7; on the last machine m can be given as follows:

m-1
C(my,m) = E(nf,k,k+1) +p(m;,m) (8)
k=1

Then, the completion time ((7; . 1, m) of job 7; . ; on the last machine m can be obtained as follows:
C(mjs1,m) = C(mj,m) + p(7js1, M), j=12,--n-1 9)
Figs. 2a-2d illustrate the calculation of makespan for a 3-job 3-machine problem.
Ultimately, the total tardiness is given by:
T=7 (max(C(m,m) - d(m),0)) (10)
j=

Using the same example instance for 3-job 3-machine problem given in Table 1 the forward calculation is illustrated in

detail below with a permutation 7 = {1, 2, 3} as well as with the due date tightness factorof t=1 .

E(nf,k.k+1) =p(ms,k) k=1,2
E(nf,1,2) =p(m3,1) =p(3,1) =2
E(nf,2,3) = p(m3,2) = p(3,2) = 2
E(nﬂk,k+1):max{£(n‘r k,k+1)—p(nj,k+1),0}+p(nj,k), j=2andk=1,2

i A+

E(m5,1,2) = max {E(n},1,2) — p(m,,2),0} + p(m,, 1)

E(nf,1,2) = max {E(n,1,2) — p(2,2),0} + p(2,1)

E(nf,1,2) = max{(2 - 3),0} +2 =2

E(nf,2,3) = max {E(n},2,3) — p(72,3),0} + p(72, 2)

E(nf,2,3) = max {E(n},2,3) — p(2,3),0} +p(2,2)

E(TEQ,ZJ) =max{(2-3),0}+3=3

E(njF,k,k+ 1) = max{E(anJ<,k+ 1) — p(m;, k + 1),0} +p(m, k), j=1landk=1,2
E(nf,1,2) = max {E(n},1,2) — p(71,2),0} + p(71, 1)

E(nf,1,2) = max {E(n},1,2) — p(1,2),0} + p(1,1)

E(nf,1,2) = max{(2 —1),0} +4 =5

A
E(zf 2.3)
il 1.2 R
3
3
1 3

Fig. 2a. Computation of E(n}, k, k + 1).

6764 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

Machine A
L Exf 23)
Elrf 12) < »
3 g 2 3
2 2 3 |
1 2 3 |
t
Fig. 2b. Computation of E(nf, k,k + 1).
Machine A E(JZ']F,2,)
-
Elzf 12)
P> 1 2
2 2 3|
] 1 | 2 3 .
t
Fig. 2c. Computation of E(7tf, k,k + 1).
Crax\T
Machine A< () >
Elrf 23) > pli3)
- >
Elrf 12)
1 2
2 1 2 3 |
1 1 | 2 3 >
1

Fig. 2d. Computation of Cp,ax(7).

E(n},2,3) = max {E(m},2,3) — p(m1,3),0} + p(m1,2)

E(nf,2,3) = max {E(n},2,3) — p(1,3),0} +p(1,2)

E(nf,2,3) =max{(3-3),0} +1=1
2
C(my,3) =Y E(nf,k,k+1) +p(m,3)
k=1
C(my,3) = E(n},1,2) + E(nf,2,3) + p(my,3)
C(my,3)=5+1+3=9
C(my,3) = C(my,3) +p(2,3)
C(m2,3)=9+3=12
C(m3,3) = C(m2,3) + p(3,3)

C(m3,3)=12+3 =15

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6765
3
T=> (max(C - d(m),0))
j=1

T = max(C(my,3) — d(m1),0) + max(C(my, 3) — d(73),0) + max(C(ms, 3) — d(m3), 0)

T = max(9 — 8,0) + max(12 — 8,0) + max(15—7,0)=1+4+8 =13

Therefore, the objective of the NIPFS problem with the total tardiness criterion is to find a permutation 7* in the set of all
permutations I7T such that

T(m") < T(nE) or T(n') < T(f), Vmell (11)

Further to be used in the speed-up method, let F(nF k,k + 1) represents the lower bound for the minimum difference
between the completion of processing the last job of 7 on machine k + 1 and k which is restricted by the no-idle constraint.
Then, F(nf,k,k+ 1) can be calculated as follows:

F(nf,k,k+1) =p(ms,k+1), k=1,2,....m-1 (12)

F(mf_;. k. k+1) = max{p(ma_1,k+ 1) — E(n},k,k+1),0} + F(nh k. k+1) k=1,2,.... m—1 (13)

F(nf,k,k+1>:max{p(nj,k+1) (m’k k+1> 0}+F< sk k+1> j=n—-1,n-2,...,1,
k=1,2,....m-1 (14)

Figs. 3a-3c and d illustrate the calculation of makespan for a 3-job 3-machine problem.
Using the same example instance for 3-job 3-machine problem, the above calculations are illustrated in detail below:

F(mh k,k+1) = p(mta,k + 1)

F(n,1,2) =p(n5,2) =p(3,2) =2 j=3andk=1

F(nf,2,3) =p(n3,3) =p(3,3) =3 j=3andk=2

F(nf,k,k-l-l) = max{p(m,j+1) - (ok, k+1) 0}+F(ok, k+1) j=2andk=1
F(m%,1,2) = max{p(m>,2) — E(n},1,2),0} + F(7},1,2)

F(m%,1,2) = max {p(2,2) — E(n},1,2),0} + F(nf,1,2)

F(nf.1,2) =max{(3-2),0} +2 =3

F(m%,2,3) = max {p(n2,3) — E(n},2,3),0} + F(n},2,3), j=2andk=2

F(n5,1,2) = max {p(2,3) - E(n5,2,3),0} + F(n},2,3)

A ,
L Elet)
Machine E(”3 ’1’2)‘ -
P
M, 3
M, 3
M, 3
|
<+« -
el 1.2) Flzr 23)

Fig. 3a. Computation of F(7§, k, k + 1).

6766 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

Machine A
Elzf 2.3)
Elrf 12 >
-
3 [I
2 2 3
1 2 3
i
F(ﬂf ,1,2) F(;zzE,Z,f%)
¢ > L
Fig. 3b. Computation of F(n§, k,k + 1).
A .
Machine E(ﬂf ,2,3)
-
E(;z,"',l,z)
3 1 EE
2 1 2 3
1 1 | 2 3

F(;rf ,1,2) F(n]E,2,3)
- -

Fig. 3c. Computation of F(nt§, k,k + 1).
F(TEg, 1,2) =max{(3-2),0}+3=4

F(njF,k,kJrl) = max{p(rcj,k+1) —E(nfﬂ,k,kJr1),0}+F<nf+1,k,k+1), j=landk=1
F(nf,1,2) = max {p(n,2) — E(n5,1,2),0} + F(n5,1,2)

F(rf,1,2) = max{p(1,2) — E(%5,1,2),0} + F(15,1,2)

F(mf,1,2) = max{(1-2),0} +3 =3

F(nf,2,3) = max {p(my,3) — E(n5,2,3),0} + F(n},2,3), j=1andk=2

F(n},2,3) = max {p(1,3) — E(n},2,3),0} + F(7},2,3)

F(n},2,3) = max{(3 - 3),0} + 4 = 4

2.3. Speed-up method for insertion neighborhood

Insertion neighborhood of a job permutation 7 is widely used for flow shop scheduling problems in the literature [35]
which is defined by considering all possible insertion moves m(u, v), u, v€ {1, 2, ..., n}. The insert move m(u, v) generates
a permutation dn from 7 by removing a job of 7 from its original position u and inserting it into position v (v¢ (u, u — 1))

At = {71, ..., 1, a1y Ty Ty W5+, T} U< D (15)

dn = {7, ..., Tp_1, Ty, Wity - o, Tut, Mgy, M} fu>w (16)

Based on the similarity of dm and 7, a short cut to evaluate the insert neighborhood can be developed by following the
reduction of computational complexity presented by [25] for the PFSP with makespan criterion. Then it is trivial to extend
it to the total tardiness criterion as explained in the forward and backward pass calculations. The following speed-up method
can be used to evaluate the insert neighborhood for the total tardiness criterion:

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6767

1. Lett=1.

2. Let Am={m, @y, ..., m,_1} be a partial permutation generated by removing job 7, from permutation 7.
a. Compute F(A7f, kk+1), EiAnjF, k,k+1),and F(A7, k,k+ 1), respectively.
b. Let F(Ar} k,k+1) =E(Anf k k+1)=0forje{1,2,..,n—T}and ke(1,2,..,m—1).

3. Repeat the following steps until all possible positions h of An = {7, 7, ..., T, _ 1} are considered such thath € {1, 2, ...,
n}Ah¢{t t—1}.
a. Let Anf = Amf_, Um,. Note that An§ = ¢. Calculate F(AnE k,k+1) fork=1,2,..,m—1.
b. Let cm=AnfUAnf = {cm,cm,,---,cm,} (Note that Amf=¢), then Fdmn, k, k+1) can be given by
F(cm,k,k+1) = max {F(Anf, k. k+ 1) — E(Anf, k, k+1),0} + F(Anf, k, k+ 1), for k=1,2, .., m—1.
c. Then the completion time of job cm, on machine m is
m-1 n
C(cmn,m) =Y F(em k. k+1)+> p(cm;, 1)

k=1 =1

d. The completion time of job cr; on the last machine m is

C(cmy, m) = C(cmj + 1, m)—p(cmj+q, m), j=n—1,n-2,..,1

e. Then, the total tardiness is
n
T = (max(C(cm, m) - d(cm;), 0))
=1

3. Let t=t+ 1. If t > n then stop; otherwise go back to step 2.

There are n iterations for Step 2 and Step 3, and both Step2 and Step 3 can be executed in time O(mn). So, the computational
complexity of this speed-up method is O(mn?) to evaluate the whole insert neighborhood of a permutation. The sped-up
method is illustrated with the following example with an example instance for 4-job 3-machine problem is given in Table 2:

Step 1. Suppose that the permutation is given by 7w ={1, 2, 3, 4}, Let t = 1.

Step 2. Let A ={2, 3, 4} be a partial permutation generated by removing job 1 from 7. Then

a. Calculate F(AnjE, k k+ 1), E(Anf, k k+ 1), and F(Anf, k k4 1), respectively.
F(ATE,1,2) = 1F(AnE,2,3) = 3F(AnE, 1,2) = 3F(An,2,3) = 3F(AnE, 1,2) = 3F(AnE, 2,3) = 4;
E(ATE,1,2) = 2E(AT, 2,3) = 2E(ATE, 1,2) = 2E(ATE, 2,3) = 3E(A7F, 1,2) = SE(AT,2,3) = 1;

F(ATE,1,2) = 2F(AnE, 2,3) = 3F(AnE, 1,2) = 3F(ATE,2,3) = 4E(AnE, 1,2) = 3E(A7,2,3) = 4

a. Let F(Amf, k. k+1) =E(Anf, k k+1)=0,k=1, 2.

Step 3. Repeat the following steps until all possible positions h of Anw ={my, 7, ..., T, _ 1} are considered such that h € {1,
2,..,n}Anhe¢{t t—1}.

Case 1: Insert job 1 into position 2 of Arn:

a. Let Ant = Anf U T, = {2,1}, then F(AT5,1,2) = 3F(A7E,2,3) =2
b. Let cm = Anf U ARS = {2,1,3,4} then

F(cm,1,2) = max{F(An5,1,2) — E(An5,1,2),0} + F(A1h,1,2) = max{3 - 2,0} +3 =4

F(cm,2,3) = max{F(A75,2,3) — E(An5,2,3),0} + F(AT},2,3) = max{2 - 3,0} +4 =4

Table 2
An Example Instance.
Job(j) Machine(k) Due Date
1 2 3 dj =17 x Y11 Pi
P1j 3 3 2 8
D2j 4 1 3 8
D3j 2 3 3 8
Daj 2 2 3 7

6768 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

c. The completion time of job ¢4 on machine 3 is
C(cmy,3) =F(cm,1,2) + F(cm,2,3) +11 =19

d. The completion time of job cr; on machine 3 is
C(cms, 3) = C(cmy, 3) — p(cmy, 3)=19 — 3 =16,

e. The completion time of job cm, on machine 3 is

C(cmy,3) = C(cms,3) — p(cms,3) =16 -3 =13

f. The completion time of job cm; on machine 3 is
C(cmy,3) =C(cmy,3) —p(cmy,3) =13 -2 =11

g. Finally, the total tardiness is
4

T =" (max(C(cm;,3) — d(cm;), 0))
j=1

T = max(11 — 8,0) + max(13 — 8,0) + max(16 — 8,0) + max(19 — 7,0) =3 + 5 + 8 + 12 = 28

Case 2: Insert job 1 into position 3 of Ax:
a. let A = Anf um, = {2,3,1}, then F(An§, 1,2) = 3F(Ant, 2,3) =2

b. Let cm = Anf U AT} = {2,3,1,4} then
F(cm,1,2) = max{F(An£,1,2) — E(Anf,1,2),0} + F(A75,1,2) = max{3 - 2,0} +2 =3

F(cm,2,3) = max{F(An§,2,3) — E(An},2,3),0} + F(A7f,2,3) = max{2 - 2,0} +3 =3

c. The completion time of job ¢4 on machine 3 is
C(cmy,3) =F(cm,1,2) + F(cm, 2,3) + 11 =17

d. The completion time of job c3 on machine 3 is C(cn3, 3) =
Clcmy, 3) — p(cmy, 3)=17 -3 =14
e. The completion time of job ¢, on machine 3 is

C(cmy,3) = C(cms,3) —p(cms,3) =14 -2 =12

f. The completion time of job c; on machine 3 is
C(cmy,3) =C(cmy,3) — p(cmy,3) =12-3 =9

g. Finally, the total tardiness is

T= 3 (max(C(cm;,3) — d(cm;),0))

=

T = max(9 — 8,0) + max(12 — 8,0) + max(14 — 8,0) + max(17 —=7,0) = 1 + 4 + 6 + 10 = 21

Case 3: Insert job 1 into position 4 of Amn:

a. Let Antf = An§ um, = {2,3,4,1}, then F(Anf, 1,2) = 3F(AnE,2,3) =3
b. Let cm = At U AT = {2,3,4,1} then

F(dm,1,2) = max {F(An§,1,2) — E(A®},1,2),0} + F(Am},1,2) = max{3-0,0} +0=3

F(dm,2,3) = max {F(An},2,3) — E(An},2,3),0} + F(Am},2,3) = max{3-0,0} +0=3

c. The completion time of job cm, on machine 3 is
C(cm4,3) =F(cm,1,2) +F(cm, 2,3) +11 =17

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6769

d. The completion time of job cmz on machine 3 is
C(cms, 3)=C(cmy, 3) — p(cmy, 3)=17 — 2 =15,

e. The completion time of job cm, on machine 3 is

C(cmy,3) = C(cms,3) — p(cms,3) =15-3 =12

f. The completion time of job cm; on machine 3 is
C(cmy,3) = C(cmy,3) — p(cm,,3) =12-3=9

g. Finally, the total tardiness is
4
T=> (max(C(cm;,3) — d(cm),0))
j=1

T = max(9 — 8,0) + max(12 — 8,0) + max(15 —7,0) + max(17 - 8,0)=1+4+8 +9 =22

Step 4. Let t=2. If t > n then stop; otherwise go back to step 2.

3. Discrete artificial bee colony algorithm

The artificial bee colony (ABC) algorithm is a new swarm intelligence based optimizer proposed in [28-32] for multi-var-
iable and multi-modal continuous function optimization. Inspired by the intelligent foraging behavior of honeybee swarm,
the ABC algorithm classifies the foraging artificial bees into three groups; namely, employed bees, onlookers and scouts. A bee
that is currently exploiting a food source is called an employed bee. A bee waiting in the hive for making decision to choose a
food source is named as an onlooker. A bee carrying out a random search for a new food source is called a scout. In the ABC
algorithm, each solution to the problem under consideration is called a food source and represented by an n-dimensional
real-valued vector, whereas the fitness of the solution corresponds to the nectar amount of the associated food resource.
Similar to the other swarm intelligence based approaches, the ABC algorithm is an iterative process. It starts with a popu-
lation of randomly generated solutions or food sources. Then the following steps are repeated until a termination criterion
is met [28-32]:

. Initialization.

. Place the employed bees on their food sources.

. Place the onlooker bees on the food sources depending on their nectar amounts.

. Send the scouts to the search area for discovering new food sources.

. Memorize the best food source found so far.

. If a termination is not satisfied, go to step 2; otherwise stop the procedure and output the best food source found so far.

AU A WN =

It is obvious that the above ABC algorithm cannot be used for a discrete/combinatorial optimization problem due to its
continuous nature. We follow the same structure for the discrete version described in Section 3.1.

3.1. Initialization

The permutation representation is used in the GA and DABC algorithms. In other words, a solution is represented by a
permutation of jobs 7 ={my, 7, ..., m,}. There are NP numbers of individuals in the population. The initial population in
the GA and DABC algorithms is constructed in such a way that the first solution is established by the NEH heuristic of
[21] and the rest of the solutions are constructed randomly.

The NEH heuristic has two phases. In phase I, jobs are ordered in descending sums of their processing times. In phase II, a
job permutation is established by evaluating the partial permutations based on the initial order of the first phase. Suppose a
current permutation is already determined for the first k jobs, k + 1 partial permutations are constructed by inserting job
k+1 in k + 1 possible slots of the current permutation. Among these k + 1 permutations, the one generating the minimum
total tardiness is kept as the current permutation for the next iteration. Then job k + 2 from phase I is considered and so
on until all jobs have been sequenced.

3.2. Employed bee phase

According to the basic ABC algorithm, the employed bees generate food sources in the neighborhood of their current
positions. As to the permutation based neighborhood structure, insert and swap operators are commonly used to yield neigh-
boring solutions in the literature [2,35]. The insert operator of a permutation 7 is defined by removing a job 7 from its
original position j and inserts it into another position p such that (p € {j,j — 1}), whereas the swap operator produces a neigh-
bor by interchanging two jobs of 7. To enrich the neighborhood structure and diversify the population, six neighboring strat-
egies, denoted as S;, based on the insert and swap operators with the perturbation strength p as well as the destruction and

6770 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

construction procedure with the destruction size of d, denoted as DestructConstruct(), of IG algorithm in [26] are separately
utilized to generate neighboring food sources for the employed bees as follows:

S1: Apply one insert move (p = 1) to a permutation 7.

S,: Apply one swap move (p = 1) to a permutation 7.

Ss3: Apply two insert moves (p = 2) to a permutation 7.

S4: Apply two swap moves (p = 2) to a permutation 7.

Ss: Apply three insert moves (p = 3) to a permutation 7.

Ss: Apply three swap moves (p = 3) to a permutation 7.

Se: Apply a DestructConstruct() with the destruction size of d = 4

Each method for the generation of neighboring food sources may have different performance during the evolution pro-
cess. Therefore, each food source (individual) in the population is assigned to one of the six strategies to generate a neigh-
boring food source. After generating a neighboring food source, a local search is applied to further improve the solution
quality (nectar amount) with a small probability of p;s=0.01. As for the selection, new good source is always accepted if
it is better than the current food source, which is similar to the basic ABC algorithm carrying out a greedy selection
procedure.

Regarding the DestructConstruct() procedure, in the destruction step, a given number d of jobs, randomly chosen and with-
out repetition, are removed from the solution, thus resulting in two partial solutions. The first one with the size d of jobs is
denoted as n® and includes the removed jobs in the order in which they are removed. The second one with the size n — d of
jobs is the original solution without the removed jobs, which is denoted as #°. Finally, the construction phase requires a con-
structive heuristic procedure. We employ the NEH insertion heuristic. In order to reinsert jobs in 7® into the destructed solu-
tion #°, the first jobs 7% is inserted into all possible n — d positions in the destructed solution 7° generating n — d partial
solutions. Among these n — d partial solutions including job 7%, the best partial solution with the minimum total tardiness
is chosen and kept for the next iteration. Then the second job 7% is considered and so on until z® is empty or a final solution is
obtained. Hence 7” is again of size. For the details of DestructConstruct() procedure, we refer to Ruiz and Stiitzle [26] where it
is well illustrated with an example instance for the makespan criterion.

The motivation for assigning one of the six strategies to each individual in the population is due to the fact that the DABC
algorithm works like a multi-populated algorithm using a different strategy in each sub-population. By employing these
strategies, the DABC algorithm implicitly takes advantage of the IG algorithm of [26] and the iterated local search (ILS) algo-
rithm of [36], respectively. In the former one, the destruction size (d) is a parameter to be carefully chosen whereas in the
latter one, the perturbation strength (p) should be determined with care. The perturbation can be achieved by removing a job
from a position and inserting it into another position randomly or swapping of any two jobs randomly. In the original IG
algorithm of [26], the destruction size of d = 4 is suggested for the makespan criterion after a detailed design of experiments.
For this reason, we use a DestructConstruct() procedure with the destruction size of d = 4. Regarding the perturbation strength
of ILS algorithm, in [36], p values ranging from 1 to 20 were tested and p values between 4 and 7 were suggested. However, in
our experiments, p values within the range from 1 to 3 swap or insert moves generated better results.

The size of the employed bees is set to the population size NP. The local search procedure will be explained in detail in
Section 3.4.

3.3. Onlooker bee phase

In the basic ABC algorithm, an onlooker bee selects a food source 7, depending on its winning probability value which is
similar to the wheel selection in GAs [2]. However, the tournament selection is widely used in GA applications due to its
simplicity and ability to escape from local optima [2]. For this reason, we propose a tournament selection with the size of
2 in the DABC algorithm. In the tournament selection, an onlooker bee selects a food source 7, in such a way that two food
sources are randomly picked up from the population, and compared to each other, then the better one is chosen. In addition,
an onlooker bee utilizes the same strategy as used by the employed bee to produce a new neighboring solution. Then, a local
search is employed to further improve the nectar amount of the onlooker bee. If the new food source obtained is better than
or equal to the current one, the new food source will be replaced by the current one and become a new member in the pop-
ulation. The onlooker bee phase in the DABC algorithm provides the intensification of local search on the relatively good
solutions chosen with a tournament size of 2. The aim is to improve the solution quality of promising solutions in the pop-
ulation. This is achieved by first applying the assigned strategy to a food source 7, and then a very effective local search later
on.

The size of the onlooker bees is 2 x NP individuals. The local search procedure will be explained in detail in Section 4.

3.4. Scout bee phase
In the basic ABC algorithm, a scout bee produces a food source randomly in the predefined search space. This will de-

crease the search efficacy, since the best food source in the population often carries better information than others during
the evolution process, and the search space around it could be the most promising region. Therefore, in the DABC algorithm,

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6771

a tournament selection with the size of 2 is again used to discard a solution in such a way that two random food sources are
picked up and the worst one is selected. Then the scout generates a food source by performing a destruction and construction
procedure with a destruction size of d = 4 to the best solution in the population. This destructed and constructed solution
will be replaced by the food source determined by tournament selection. Thus, poor solutions in the population will be
replaced by the perturbations of the best so far solution. For this reason, the scout bee phase serves for additional diversi-
fication by perturbations of the best so far solution in the population that will be replaced by a relatively small number of
unpromising solutions in the population. The size of the scout bees is 0.1 x NP individuals.
As for the DABC algorithm, the following computational procedure is used as given in Fig. 4.

1. Set the population size NP, Sy,ax, pis Si for each food source.
2. Initialize the population:
a. The first one is by NEH whereas others are randomly established.
b. T = NEH(TC])
c. m={my, My, ..., Tnp} and evaluate each solution in the population.
3. Employed bee phase:

Fori=1, 2, ... NP, repeat the following sub-steps:

a. Produce a new food source u; for the it" employed bee who is associated with the strategy S; and evaluate the new
solution.
b. If r < prs, perform LocalSearch() procedure to u;.
c. If u; is better than 7;, let 7; = u; and update best so far solution 7.
4. Onlooker bee phase.

Fori=1, 2, ... 2 x NP, repeat the following sub-steps:

a. Select a food source 7, in the population for the onlooker bee by using the tournament selection with size of 2 (Better
one is chosen)
b. Generate a new solution u; for the onlooker bee by using the S, and apply LocalSearch().
c. If uy is better than my, let m, = u, and update the best so far solution 7.
5. Scout phase.

a. A tournament selection with the size of 2 is again used to discard a solution in such a way that two random food
sources are picked up from population and the worst one is selected.

b. Then the scout generates a food source by performing a DestructConstruct() procedure with a destruction size of d = 4
to the best so far solution 7 in the population and the obtained solution is replaced with the food source determined
by the tournament selection. The size of the scout bees is 0.2 x NP individuals.

c. Scout phase.

6. Memorize the best solution achieved so far.
7. If the termination criterion is reached, return the best solution found so far; otherwise go to Step 4.

3.5. Local search

Regarding the local search algorithm denoted as LocalSearch(), we use the insertion neighborhood structure since we
develop a speed-up method for it. Insertion neighborhood is iteratively applied in the LocalSearch() procedure. In the inser-
tion neighborhood, a job is removed from its original position, and then it is inserted to all possible positions of the remain-
ing jobs. Of course, the better one is chosen and compared to an incumbent solution to update if better. This process is
applied as long as the incumbent solution improves as shown in Fig. 5.

4. Proposed genetic algorithm

Genetic algorithms (GA) are a family of parallel search heuristics inspired by the biological process of natural selection
and evolution [2]. In GA optimization, solutions are encoded into chromosomes to establish a population being evolved
through generations. At each generation, parents are selected and mated from the population to carry out the crossover
operator leading to new solutions called children. Then, some of the individuals are mutated or perturbed. Finally, they
are pooled together to select new individuals for next generation. This procedure is repeated until the stopping criterion
is achieved.

However, in the proposed GA, we employ multiple crossover strategies to enhance the solution quality. Basically, we em-
ploy three crossover strategies as follows:

S1: PTL crossover in [37].

6772 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

procedure DABC
= [7[1 STy e IZ'NP]
7, = NEH(r,)
S, =rand()%S

T =arg min(;r,-)

max

i=1,2,.,NP
do
/I Employed Bee Phase
u; =7,
i=1,2,.,NP
u; =S, (”z)
i=1,2,.,NP
if (” < pLS)
u; = LocalSearch(ui)
i=1,2,.,NP
if (f("‘i)<f(”i))
i=1,2,.,NP
T =u,
i=1,2,...,NP
if ()< rlmy))
i=1,2,.,NP
g =U;
i=1,2,..NP
endif
endif
endif

/I Onlooker Bee Phase

T, = TournamenlSelect(ﬂ'e NP)

i=1,2,.,2¢NP
Up =S (”k)
u, = LocalSearch(u %)
i=1,2,.,NP
if (flu)<f(x;)
i=1,2,.,NP
T =Uy
i=1,2,..,2*NP
if (£l)< f(zy))
i=1,2,..24NP
Ty =,
i=1,2,.,2*NP
endif

/I Scout Bee Phase

T, = TournamentSelect(ﬂ'e NP)
i=1,2,.,0.15NP

u, = DestructCmstruct(ﬂ' B)
T =uy

while(NolTer min ation)

return Ty

endprocedure

Fig. 4. DABC algorithm.

S,: OX crossover in [38].
S3: PMX crossover in [39].

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6773

procedure LocalSearch(ﬂ)
o =7
k=1
t=1;
While(t < n)
k=(k+1)%n
7, =remove job 1w, from 7,
7, = best permutatim obtained by inserting m, in all possible positions of 7,
if (flz,)<f(m))
Ty =70,
t=1
else
t=t+1
endif
endwhile
=7,
return 7T

endprocedure

Fig. 5. Pseudo code for the local search algorithm.

The proposed GA algorithm can be summarized as follows. The initial population is constructed in such a way that the
first individual is constructed by NEH heuristic and the rest is randomly established. In the proposed GA, each individual
is assigned to one of the three crossover strategies randomly. At each generation, for the in individual in the population,
a mate is chosen by the tournament selection with size 2 from the population to produce an offspring through the use of
the associated crossover strategy. This process is conducted in a loop until another NP offspring are produced. Some of
the offspring generated are mutated with an insert move. Then, a local search is applied to each offspring generated. For
the population of the next generation, one to one competition is used in a way that the better one is kept in the population,
thus maintaining again a size NP of population. This procedure is repeated until the stopping criterion is achieved. The fol-
lowing computational procedure explains the components of the proposed GA:

1. Set the population size NP, Siax-
2. Assign a crossover strategy S; for each individual in the population randomly.
3. Initialize the population:
a. The first one is by NEH whereas others are randomly established.
i. = NEH(TE1)
ii. mw={my, M, ..., Tnp} and evaluate each solution in the population.

4, Fori=1, 2, ..., NP, repeat the following sub-steps:

a. For the individual 7;, select a mate 7, from the population by the tournament selection with size 2.
b. Produce a new offspring u; by recombining them with the strategy S; = (7;,).

c. Mutate u; with a mutation probability.

d. Evaluate the new offspring u; and apply LocalSearch() to u;.

e. If uy; is better than m; let 7; = u; and update best so far solution 7.

If the termination criterion is reached, return the best solution found so far 7p; otherwise go to Step 3.

5. Computational results

The GA and DABC algorithms were coded in Visual C++ and run on an Intel Pentium IV 3.0 GHz PC with 512 MB memory.
They were applied to the 120 benchmark instances of Taillard in [27] ranging from 20 jobs with 5 machines to 500 jobs with
20 machines. All the parameters in this study are determined experimentally. Regarding the parameters of the GA algorithm,
the population size is fixed at NP = 100. The crossover and mutation probabilities are taken as 1.0 and 0.05, respectively. The
PTL, OX and PMX crossover operators are employed as mentioned before. As to the parameters of the DABC algorithm, again
the population size is fixed at NP =100. The sizes of employed bees, onlooker bees and scout bees are NP, 2 x NP and
0.1 x NP, respectively. Strategies are determined as explained in Section 2. Five (R=5) runs were carried out for each

6774 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

Convergence Plot for GA and DABC
Variable
—e— GA
—&— DABC

S

8

>

&

=

8

&

2

©

&

[}

g

E:

-10.0 =
10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
CPU Time
Fig. 6. Convergence plot of GA vs DABC.
Table 3
Computational results of GA and DABC: Tjax=100 xn, t=1.
GA DABC
Avg Min Max Std Avg Min Max Std

20x 5 -10.95 -11.52 -9.82 0.72 -11.29 -11.58 -10.81 0.36
20 x 10 -12.51 -13.18 -11.60 0.66 -12.99 -13.26 -12.50 0.33
20 x 20 -13.50 -13.95 -12.83 0.49 -13.93 -14.06 -13.71 0.17
50 x 5 —-10.06 -10.55 -9.39 0.46 -10.65 -11.09 -10.18 0.37
50 x 10 -12.85 —13.68 -11.97 0.70 -13.54 -14.20 -12.97 0.51
50 x 20 -12.76 -13.66 -11.79 0.77 -13.63 -14.22 -12.82 0.57
100 x 5 —6.40 -7.15 -5.72 0.57 -6.80 -7.33 -6.22 0.44
100 x 10 -8.12 -8.76 -7.40 0.55 -8.80 -9.38 -8.26 0.46
100 x 20 -9.60 -10.43 —8.81 0.66 -10.33 -11.08 -9.67 0.56
200 x 10 -5.53 -6.39 -4.80 0.63 -537 -5.72 -4.92 0.34
200 x 20 -7.94 —-8.66 -7.32 0.54 -8.14 -8.78 -7.63 0.47
500 x 20 -3.15 -3.93 —2.52 0.58 -3.96 —4.50 -3.49 0.40
Avg -9.45 -10.16 —8.66 0.61 -9.95 -10.43 -9.43 0.42

problem instance. Each run was compared to the solution produced by the NEH algorithm modified for the NIPFS problem.
The minimum (Min), average (Avg), maximum (Max) and standard deviation (Std) of five runs are reported. To be more spe-
cific, the average relative percent deviation from NEH solution is given as follows:

g = 30 (= < 100) g (17)

i=1

where H;, NEH, and R are the objective function values generated by any of heuristic algorithms in each run, the NEH solution
value and the number of runs, respectively. As a termination criterion, both algorithms were run for T, = 10 x n seconds to
Tmax = 100 x n seconds in order to obtain the convergence graphs of the GA and DABC algorithms. Then for the termination
criterion of Tpax = 100 x n seconds, the best known solutions are presented for three levels of due date tightness factor. The
determination of due date for tardiness criterion is a major issue when dealing with tardiness criterion. There are several
methods proposed for determining the due dates when tardiness criterion is considered. We choose a simple form which
is called total work content rule (TWK) [40]. In the TWK rule, the due date of job j is determined by d; = T x Y ;' ; p; where
7 is a due date tightness factor and Y}’ ; p; is the total processing time of job j on all the machines. To make the job due date
loose, medium and tight, 7 is taken as 1, 2 and 3 (tight, medium and loose, respectively).

5.1. Computational results for the tight due date
In this setting, T = 1 is considered. The convergence plot of both GA and DABC algorithms is given in Fig. 6 where it is clear

that DABC algorithm is much faster to converge to global or local optima. The computational results for the termination
criterion of Ty,ax = 100 x n seconds are given in Table 3.

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6775
Convergence Plot for GA and DABC
Variable
-12.04 —&— GA
—®— DABC
S
® -12.54
>
&
£ -13.0
g
2 -13.5
B
&
o -14.04
o
o
(7]
X -14.54
-15'0< T T T T T T T T T T
10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
CPU Time
Fig. 7. Convergence plot of GA vs DABC.
Table 4
Computational results of GA and DABC: Ty.x =100 x n, t=2.
GA DABC
Avg Min Max Std Avg Min Max Std
20x 5 -18.45 -18.88 -17.67 0.52 -18.72 -19.10 -18.32 0.35
20 x 10 —28.87 —29.49 —27.80 0.71 -29.33 —29.62 —28.96 0.31
20 x 20 —28.23 —29.04 -27.32 0.72 -29.10 -29.40 —28.37 0.44
50 x5 -11.62 -12.28 -10.76 0.63 -12.36 -12.80 -11.87 0.40
50 x 10 -15.28 -17.06 -13.82 1.28 -16.57 -17.40 -15.77 0.65
50 x 20 -17.64 —18.89 -16.37 1.05 -18.94 -19.93 -18.13 0.71
100 x 5 —8.62 -9.36 -7.84 0.62 -9.14 -9.62 -8.52 0.47
100 x 10 -10.73 -11.39 -10.03 0.57 -11.46 -11.98 -10.98 0.40
100 x 20 -12.78 -13.76 -11.52 0.91 -13.58 -14.17 -12.83 0.55
200 x 10 -5.99 —6.68 -5.27 0.57 -5.70 —6.18 -5.00 0.47
200 x 20 -8.25 -9.01 —7.40 0.64 -8.36 -8.94 -7.92 0.42
500 x 20 -3.31 -4.13 -2.50 0.69 -4.19 -4.81 -3.70 0.47
Avg -14.15 —15.00 -13.19 0.74 -14.79 -15.33 -14.20 0.47
Convergence Plot for GA and DABC
Variable
—@— GA
il —B— DABC

Average Relative Percent Deviation

-24.51

-25.04

S25858]

-26.0

-26.5

-27.0

-27.54,

10n

T
20n

T
30n

T
40n

T T
50n 60n
CPU Time

T T T T
70n 80n 90n 100n

Fig. 8. Convergence plot of GA vs DABC.

From Table 3, it is obvious that the improvements of the DABC algorithm over the NEH solutions are higher than those in
the GA algorithm. On overall average, the gap between the GA and DABC algorithm was 0.5% (9.95-9.45). Similar
observations can also be made for Min and Max values too. In addition, a paired t-test confirms the significance on
o= 0.05 in differences between GA and DABC algorithm since the p-value was 0.000 on the behalf of DABC algorithm.

6776 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

Table 5

Computational results of GA and DABC: Ty =100 x n, t=3 .

GA DABC
Avg Min Max Std Avg Min Max Std

20 x5 —41.60 —42.28 —40.69 0.76 —42.04 —42.28 —41.55 0.32
20 x 10 —68.94 —69.47 —68.08 0.58 —69.45 —69.54 —69.29 0.13
20 x 20 -81.86 -82.61 -80.21 1.05 -82.21 —82.61 -81.81 0.41
50 x 5 -14.90 -15.69 —14.05 0.66 -15.71 -16.28 -15.26 0.41
50 x 10 -23.22 -25.33 -20.73 1.89 —24.92 -26.30 -23.28 1.24
50 x 20 —30.26 —32.45 -28.12 1.75 -32.38 —34.05 -30.47 1.42
100 x 5 -9.42 -10.31 -8.36 0.76 -10.12 -10.86 -9.39 0.61
100 x 10 -11.90 -12.85 -10.94 0.77 -12.52 -13.24 -11.90 0.52
100 x 20 -15.53 -16.57 -14.30 0.95 -16.73 -17.54 —15.88 0.68
200 x 10 —6.67 -7.57 -5.81 0.73 -6.33 -7.16 -5.70 0.62
200 x 20 -9.44 -10.23 —8.68 0.62 -9.83 -10.65 -9.14 0.58
500 x 20 -3.87 —4.65 -3.15 0.60 -4.76 -5.29 -4.32 0.40
Avg —26.47 —27.50 -25.26 0.93 -27.25 —27.98 —26.50 0.61

Table 6

Best known solutions for Ty,ax = 100 x n.
Ins =1 =2 =3

NEH GA DABC NEH GA DABC NEH GA DABC

20 x5 13,321 11,967 11,967 0.00 8398 6941.00 6941 0.00 4098 2543 2543 0.00
20 x 5 12,956 10,752 10,764 0.11 8129 6053.00 6042 -0.18 4049 2423 2423 0.00
20 x5 13,918 12,048 12,041 -0.06 9253 7463.00 7463 0.00 4858 3637 3637 0.00
20 x5 12,527 11,163 11,163 0.00 6603 5805.00 5784 -0.36 3987 1901 1901 0.00
20 x 5 14,331 12,812 12,812 0.00 9512 7844.00 7844 0.00 5562 3174 3174 0.00
20 x5 14,589 13,264 13,264 0.00 10252 8217.00 8209 -0.10 5612 3592 3592 0.00
20 x5 10,777 9087 9017 -0.77 5685 4395.00 4395 0.00 2003 1036 1036 0.00
20 x 5 11,345 10,564 10,564 0.00 6756 5550.00 5542 -0.14 2924 1657 1657 0.00
20 x 5 13,575 11,887 11,887 0.00 8085 6771.00 6645 -1.86 4640 2618 2618 0.00
20x 5 11,053 10,057 10,057 0.00 6703 5341.00 5341 0.00 3560 1670 1670 0.00
20 x 10 24,219 22,317 22,317 0.00 15931 11988.00 11988 0.00 5883 3024 3020 -0.13
20 x 10 21,254 17,748 17,748 0.00 11124 7321.00 7321 0.00 4368 1026 1026 0.00
20 x 10 20,981 18,568 18,568 0.00 11052 8863.00 8892 033 3382 1430 1433 0.21
20 x 10 22,461 19,259 19,259 0.00 12177 10329.00 10329 0.00 5842 2754 2754 0.00
20 x 10 16,124 14,442 14414 -0.19 8754 5301.00 5301 0.00 1843 48 48 0.00
20 x 10 20,541 19,047 19,029 -0.09 13054 9889.00 9889 0.00 6034 2305 2305 0.00
20 x 10 19,189 16,091 16,091 0.00 10587 6879.00 6912 0.48 4227 836 836 0.00
20 x 10 23,474 18,279 18,196 -0.45 12043 8523.00 8294 -2.69 3865 1020 993 -2.65
20 x 10 20,531 17,942 17,898 -0.25 11118 8053.00 8053 0.00 2489 800 800 0.00
20 x 10 18,464 16,051 16051 0.00 10786 5881.00 5881 0.00 2389 522 522 0.00
20 x 20 41,814 34,821 34,821 0.00 21255 14548.00 14548 0.00 4303 989 989 0.00
20 x 20 35,460 32,761 32,635 -0.38 17368 13957.00 13863 -0.67 7336 630 630 0.00
20 x 20 41,118 34,970 34,970 0.00 21268 14647.00 14647 0.00 2010 443 443 0.00
20 x 20 37,728 31,754 31,682 -0.23 18804 12163.00 12042 -0.99 3153 233 233 0.00
20 x 20 41,816 35,635 35,635 0.00 23498 15570.00 15168 -2.58 4768 888 888 0.00
20 x 20 44316 37,514 37,514 0.00 25637 17813.00 17813 0.00 7418 1978 1978 0.00
20 x 20 40,475 33,469 33,469 0.00 19198 13378.00 13378 0.00 3253 119 119 0.00
20 x 20 42,993 36,573 36,358 -0.59 24363 16894.00 16601 -1.73 8912 920 920 0.00
20 x 20 38,382 34,532 34,532 0.00 18885 14331.00 14443 0.78 4464 642 642 0.00
20 x 20 48,294 42,507 42,470 -0.09 30250 23169.00 23132 -0.16 11885 4659 4659 0.00
50 x 5 83,374 75,494 75,193 -0.40 71526 63390.00 62893 -0.78 59388 51340 51038 -0.59
50 x5 73,934 64,439 64,236 —-0.32 56209 51298.00 51360 0.12 47234 38737 38301 -1.13
50 x 5 71,247 62,171 61,472 -1.12 58479 49620.00 49664 0.09 47978 37877 37535 -0.90
50 x 5 73,015 64,939 64,439 -0.77 59802 52113.00 51684 -0.82 47621 39384 39271 -0.29
50 x5 87,412 76,615 76,250 -0.48 73397 63848.00 63408 —0.69 59588 50719 50936 0.43
50 x 5 69,539 63,811 63,369 -0.69 58909 50946.00 50620 -0.64 45416 38778 37940 -2.16
50 x 5 75,334 69,548 68,893 -0.94 64742 57044.00 56668 —0.66 49577 44916 44335 -1.29
50 x 5 73,989 65,703 65,580 —0.19 59508 53317.00 52800 -0.97 48712 41362 40991 -0.90
50 x 5 71,350 63,559 63,148 -0.65 59068 51797.00 51196 -1.16 47446 40115 39972 -0.36
50 x5 68,091 61,932 61,675 -0.41 56542 48903.00 48695 -0.43 44428 36606 36726 033
50 x 10 96,084 84,946 83,909 -1.22 70406 60263.00 59431 -1.38 45426 35447 34354 -3.08
50 x 10 96,122 81,099 81,142 0.05 70256 57351.00 57051 -0.52 41849 34322 33725 -1.74

Table 6 (continued)

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

6777

Ins t=1 =2 =3
NEH GA DABC NEH GA DABC NEH GA DABC

50 x 10 96,659 81,443 81,338 -0.13 69064 56763.00 57337 1.01 48117 34099 33296 -2.35
50 x 10 10,5275 87,585 87,857 031 75910 62304.00 62109 -0.31 53212 37489 37715 0.60
50 x 10 87,282 75,977 75,553 -0.56 61358 50819.00 50553 -0.52 43700 27757 27555 -0.73
50 x 10 113,153 103,735 102,622 -1.07 90967 78527.00 76774 -2.23 69936 53326 53035 -0.55
50 x 10 105,044 90,017 90,026 0.01 81741 63955.00 64933 1.53 49474 38566 38964 1.03
50 x 10 116,815 101,040 100,845 -0.19 89305 76428.00 76410 -0.02 68499 52415 51695 -1.37
50 x 10 104,654 90,444 88,425 -2.23 80038 65334.00 63883 -2.22 57251 41434 41104 -0.80
50 x 10 105,474 90,365 89,544 -0.91 76785 64003.00 64454 0.70 50412 39702 38193 -3.80
50 x 20 179,620 152,776 151,146 -1.07 128181 102017.00 100282 -1.70 75503 50301 48603 —-3.38
50 x 20 198,205 178,170 178,551 0.21 147987 129488.00 127933 -1.20 96025 79423 79527 0.13
50 x 20 159,661 134,996 133,707 -0.95 115658 86084.00 86505 0.49 71120 40382 38117 -5.61
50 x 20 180,857 168,241 165,572 -1.59 138789 118388.00 116191 -1.86 91555 67990 66628 —2.00
50 x 20 161,394 137,647 138,202 0.40 113248 90583.00 88042 -2.81 75877 41834 41089 -1.78
50 x 20 205,208 174,298 174,050 -0.14 152802 124655.00 124852 0.16 105304 76922 76100 -1.07
50 x 20 196,005 169,477 167,336 —-1.26 143743 121218.00 119186 —1.68 101772 68770 68095 —0.98
50 x 20 179,859 149,101 148,055 -0.70 125102 98577.00 96411 -2.20 76685 52412 50169 —4.28
50 x 20 175,772 151,486 149,608 -1.24 125688 100341.00 99285 -1.05 77412 51753 48983 —-5.35
50 x 20 190,556 162,087 162,058 —0.02 139609 111332.00 110408 -0.83 93996 60348 60104 -0.40
100 x 5 298,174 275389 275334 -0.02 285338 250398.00 251383 0.39 262852 225179 223665 —0.67
100 x 5 267,397 235,059 234,621 -0.19 242559 210591.00 209742 -0.40 221265 185468 184197 -0.69
100 x 5 249,896 231,944 230438 -0.65 236066 207809.00 206974 -0.40 203539 184406 181817 -1.40
100 x 5 245,398 235459 234,802 -0.28 230042 212818.00 211118 -0.80 203266 187410 185757 —0.88
100 x 5 279,278 259,364 258,262 042 252110 232388.00 232441 0.02 230034 207939 207748 —-0.09
100 x 5 242,859 231,576 231,186 -0.17 222308 205016.00 206329 0.64 201969 181424 182094 0.37
100 x 5 298,044 281,771 283,174 0.50 272737 257479.00 257664 0.07 249797 231854 231638 -0.09
100 x 5 244,861 223,719 222,646 048 222169 200988.00 198825 —1.08 194671 175283 173215 -1.18
100 x 5 263,468 240,307 239,975 -0.14 241094 217721.00 215198 -1.16 212581 190631 188671 -1.03
100 x 5 259,241 243926 243,719 -0.08 237678 217854.00 217592 -0.12 209812 192785 191704 -0.56
100 x 10 377,791 342,505 338,743 -1.10 331746 289840.00 289108 -0.25 277753 237381 237848 0.20
100 x 10 347,990 297,444 294,444 -1.01 299376 249731.00 245270 -1.79 249041 199095 196946 -1.08
100 x 10 388,534 361,571 360,134 -0.40 342316 310438.00 309437 -0.32 293615 260874 259856 -0.39
100 x 10 351,393 321,643 317,798 -1.20 307801 270135.00 267251 -1.07 247390 216108 214477 -0.75
100 x 10 351,471 325,783 323,505 -0.70 321683 277181.00 274618 -0.92 256967 227478 227897 0.18
100 x 10 360,978 332,261 330,560 -0.51 313508 284224.00 283802 -0.15 264504 236711 235243 -0.62
100 x 10 398,162 372,681 372,882 0.05 353925 326250.00 325275 -0.30 306734 276819 275417 -0.51
100 x 10 411,751 367,132 365465 —0.45 358275 316222.00 314847 -043 312166 265280 265410 0.05
100 x 10 414,838 379,481 376,049 -0.90 369191 328085.00 323555 -1.38 318187 272638 270339 -0.84
100 x 10 388,783 360,372 357,984 -0.66 341032 309476.00 308887 -0.19 280976 255659 253657 -0.78
100 x 20 601,079 543,100 539,114 -0.73 502158 442179.00 442523 0.08 398127 346469 344529 -0.56
100 x 20 542,467 482,928 478,498 -0.92 459732 382160.00 380613 -0.40 339899 287282 282703 -1.59
100 x 20 574,721 512,251 513,893 0.32 501413 420858.00 415127 -1.36 402611 316223 316348 0.04
100 x 20 626,271 575,760 573,722 -0.35 511250 476788.00 477808 0.21 425126 382819 379075 -0.98
100 x 20 637,247 592,204 592,374 0.03 556399 494256.00 493102 -0.23 442029 396367 394401 -0.50
100 x 20 525,558 473,867 469,846 —0.85 434001 373313.00 368815 -1.20 343435 273103 270902 -0.81
100 x 20 579,218 505,607 497,865 —1.53 476746 404445.00 402877 -0.39 385684 312395 299552 —-4.11
100 x 20 554,906 485,407 476,213 -1.89 451146 382679.00 379894 -0.73 364837 279760 273432 -2.26
100 x 20 604,783 531,843 528,866 —0.56 490017 430264.00 430528 0.06 384188 329712 329727 0.00
100 x 20 545,207 487,618 483,724 -0.80 473561 386954.00 383446 -0.91 349729 285080 282060 —1.06
200 x 10 1319320 1199911 1205319 045 1192282 1093384.00 1101369 0.73 1092689 999767 1002725 0.30
200 x 10 1437820 1365143 1373677 0.63 1326598 1265893.00 1265999 0.01 1261013 1166643 1171867 0.45
200 x 10 1441218 1331081 1340491 0.71 1356781 1242598.00 1234266 —0.67 1247566 1128663 1141786 1.16
200 x 10 1154727 108,8191 1092638 0.41 1057139 986035.00 995151 0.92 966442 880971 903754 2.59
200 x 10 1290331 1212741 1222633 0.82 1189336 1107181.00 1113806 0.60 1090815 1018776 1017064 —0.17
200 x 10 1363418 1280086 1281765 0.13 1272808 1177972.00 1178595 0.05 1146758 1081561 1087435 0.54
200x 10 117,8535 1088757 1093614 0.45 1046922 979124.00 993868 1.51 996140 887615 878955 —0.98
200 x 10 1328200 1277465 1284533 0.55 1237749 1191301.00 1187359 —-0.33 1116333 1079061 1079673 0.06
200 x 10 1148941 1060598 1083458 2.16 1011058 947510.00 968436 2.21 956062 874785 881445 0.76
200 x 10 1347501 1278337 1289052 0.84 1285249 1183044.00 1187830 0.40 1158014 1084766 1082135 —0.24
200 x 20 1914686 1765262 1742432 —-1.29 1691337 1567074.00 1570572 0.22 1547320 1376841 1353941 -1.66
200 x 20 1862329 1702159 1699957 -0.13 1624698 1491817.00 1505167 0.89 1434341 1308190 1307304 -0.07
200 x 20 1795606 1646350 1641640 -0.29 1619988 1460588.00 1457345 —-0.22 1434138 1265184 1240584 -1.94
200 x 20 1737196 1562815 1556739 -0.39 1496851 1361998.00 1365570 0.26 1315248 1163455 1162550 —0.08
200 x 20 1909792 1761000 1753548 -0.42 1726674 1562980.00 1562734 —0.02 1533446 1364960 1351609 -0.98
200 x 20 1877710 1719678 1726145 0.38 1639012 1513100.00 1515802 0.18 1441838 1330849 1326076 —0.36
200 x 20 1881884 1793939 1799706 0.32 1738407 1598545.00 1608012 0.59 1518300 1410288 1408128 -0.15
200 x 20 1940654 1766076 1762022 —0.23 1730548 1567889.00 1573667 0.37 1514828 1355643 1350612 —0.37
200 x 20 1826020 1605706 1612852 0.45 1558229 1408503.00 1394085 —1.02 1344806 1208681 1207407 -0.11

(continued on next page)

6778 M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779

Table 6 (continued)

Ins =1 =2 =3
NEH GA DABC NEH GA DABC NEH GA DABC

200 x 20 1809000 1629668 1634999 0.33 1613568 1427106.00 1419802 -0.51 1406831 1227440 1240100 1.03

500 x 20 8767607 8394179 8384574 —-0.11 8167044 7883963.00 7846216 —0.48 7834816 7401599 7374650 —0.36
500 x 20 8903739 8488335 8430748 -0.68 8493104 7962648.00 7875107 —1.10 8103643 7598768 7421148 -2.34
500 x 20 9788215 9377660 9371255 -0.07 9184747 8910955.00 8789412 136 8775336 8407828 8346013 -0.74
500 x 20 8785224 8332951 8216162 —1.40 8203164 7789377.00 7651437 —1.77 7642602 7242521 7224174 -0.25
500 x 20 9475156 9212651 9154929 -0.63 9128619 8714514.00 8656792 —-0.66 8619555 8216377 8158655 —0.70
500 x 20 9043257 8610730 8469401 -1.64 8454064 8110775.00 7962821 —-1.82 8066411 7589616 7486682 —1.36
500 x 20 9336734 9028213 9019965 -0.09 8839139 8527269.00 8577047 0.58 8375832 8112635 8086507 —0.32
500 x 20 9672745 9447900 9430381 -0.19 9119356 8871310.00 8854399 —-0.19 8583457 8329374 8309076 -0.24
500 x 20 8581402 8177156 8114888 -0.76 8019920 7642461.00 7650108 0.10 7470198 7155465 7153987 —-0.02
500 x 20 9529863 9228980 9191294 -0.41 9094226 8729464.00 8691778 —-0.43 8610038 8229948 8192262 -0.46
Avg -0.31 -0.40 —0.64

5.2. Computational results for the medium due date

In this setting, T = 2 is considered. The convergence plot of both GA and DABC algorithms is given in Fig. 7 where it is clear
that DABC algorithm is much faster to converge to global or local optima. The computational results for the termination cri-
terion of Ty,.x = 100 x n seconds are given in Table 4.

From Table 4, it is obvious that the improvements over the NEH solutions are higher than the one in the GA algorithm. On
overall average, the gap between the GA and DABC algorithm was 0.64% (14.79-14.15). Similar observations can also be
made for Min and Max values too. In addition, a paired t-test confirms the significance on o = 0.05 in differences between
GA and DABC algorithm since the p-value was 0.001 on the behalf of DABC algorithm.

5.3. Computational results for the loose due date

In this setting, T = 3 is considered. The convergence plot of both GA and DABC algorithms is given in Fig. 8 where it is clear
that DABC algorithm is much faster to converge to global or local optima. The computational results for the termination cri-
terion of Ty,.x = 100 x n seconds are given in Table 5.

From Table 5, it is obvious that the improvements over the NEH solutions are higher than the one in the GA algorithm. On
overall average, the gap between the GA and DABC algorithm was 0.78% (27.25-26.47). Similar observations can also be
made for Min and Max values too. In addition, a paired t-test confirms the significance on « = 0.05 in differences between
GA and DABC algorithm since the p-value was 0.000 on the behalf of DABC algorithm.

5.4. Best known solutions

Finally, for the termination criterion of T,,,x = 100 x n seconds, the best solutions for both algorithms are given in Table 6
with the relative percent deviations of DABC algorithm from GA (i.e. (DABC — GA) * 100/GA).

As seen in Table 6, the DABC algorithm achieved an improvement of 0.31% for 7 =1, 0.40% for 7 = 2 and 0.64% for t = 3.
These differences were statistically significant at o = 0.05 level since all the p-values were 0.014, 0.030 and 0.007, respec-
tively. These analyses confirm the fact that the DABC algorithm presented for the NIPFS problem was statistically better than
the GA algorithm.

6. Conclusions

In this paper, we presented a DABC algorithm to solve the NIPFSP with the total tardiness criterion. The paper presents the
following contributions: First of all, a discrete artificial bee colony algorithm is presented to solve the problem on hand first
time in the literature. Secondly, some novel methods of calculating the total tardiness from makespan are introduced for the
no-idle permutation flowshop scheduling problem. Finally, the main contribution of the paper is due to the fact that a novel
speed-up method for the insertion neighborhood is developed for the total tardiness criterion. The performance of the dis-
crete artificial bee colony algorithm is evaluated against a traditional genetic algorithm. The computational results show its
highly competitive performance when compared to the genetic algorithm. Ultimately, we provide the best known solutions
for the total tardiness criterion with different due date tightness levels for the first time in the literature for the Taillard’s
benchmark suit.

For the future research, the DABC algorithm will be extended to solve the other scheduling problems in the literature. In
addition, the DABC algorithm may be easily extended to permutation based combinatorial optimization problems such as
quadratic assignment problem, traveling salesman problem and its variants and so on.

M.F. Tasgetiren et al./Applied Mathematical Modelling 37 (2013) 6758-6779 6779
Acknowledgement

M. Fatih Tasgetiren acknowledges the support provided by the TUBITAK (The Scientific and Technological Research Coun-
cil of Turkey) under the grant # 110M622. In addition, this research is partially supported by National Science Foundation of
China under Grants 61174187.

References

[1] H.S. Reza, S. Saghafian, Flowshop-scheduling problems with makespan criterion: a review, Int. J. Prod. Res. 43 (14) (2005) 2895-2929.
[2] R. Ruiz, C. Maroto, A comprehensive review and evaluation of flowshop heuristics, Eur. J. Oper. Res. 165 (2) (2005) 479-494.
[3] J.M. Framinan, R. Leisten, Total tardiness minimization in permutation flow shops: a simple approach based on a variable greedy algorithm, Int. J. Prod.
Res. 46 (22) (2008) 6479-6498.
[4] S. Hasija, C. Rajendran, Scheduling in flowshops to minimize total tardiness of jobs, Int. J. Prod. Res. 42 (11) (2004) 2289-2301.
[5] R. Ruiz, E. Vallada, C. Fernandez-Martinez, Scheduling in flowshops with no-idle machines, in: U.K. Chakraborthy (Ed.), Computational Intelligence in
Flowshop and Job Shop Scheduling, Springer Verlag, Berlin, Heidelberg, 2009, pp. 1-34.
[6] N.E.H. Saadani, A. Guinet, M. Moalla, Three stage no-idle flow-shops, Comput. Ind. Eng. 44 (3) (2003) 425-434.
[7] V.S. Tanaev, Y.N. Sotskov, V.A. Strusevich, Scheduling Theory, Multi-Stage Systems. Kluwer Academic Publishers, Dordrecht, 1994.
[8] P. Baptiste, LK. Hguny, A branch and bound algorithm for the F/no—idle/Cmax. in: Proceedings of the International Conference on Industrial
Engineering and Production Management, IEPM'97, Lyon, France, 1997, pp. 429-438.
[9] D. Baraz, G. Mosheiov, A note on a greedy heuristic for the flow-shop makespan minimization with no machine idle-time, Eur. J. Oper. Res. 184 (2)
(2008) 810-813.
[10] I. Adiri, D. Pohoryles, Flow-shop/no-idle or no-wait scheduling to minimize the sum of completion times, Nav. Res. Logist. Q. 29 (3) (1982) 495-504.
[11] P. Vachajitpan, Job sequencing with continuous machine operation, Comput. Ind. Eng. 6 (3) (1982) 255-259.
[12] C.R. Woollam, Flowshop with no idle machine time allowed, Comput. Ind. Eng. 10 (1) (1986) 69-76.
[13] O. Cepek, M. Okada, M. Vlach, Note: on the two-machine no-idle flowshop problem, Nav. Res. Logist. 47 (4) (2000) 353-358.
[14] L. Narain, P.C. Bagga, Minimizing total elapsed time subject to zero total idle time of machines in n x 3 flowshop problem, Indian J. Pure Appl. Math. 34
(2) (2003) 219-228.
[15] N.E.H. Saadani, A. Guinet, M. Moalla, A traveling salesman approach to solve the F/no — idle/Cmax problem. in: Proceedings of the International
Conference on Industrial Engineering and Production Management, (IEPMO1), Quebec, Canada, 2001, pp. 880-888,
[16] N.E.H. Saadani, A. Guinet, M. Moalla, A travelling salesman approach to solve the F/no—idle/Cmax problem, Eur.]. Oper. Res. 161 (1) (2005) 11-20.
[17] J. Kamburowski, More on three-machine no-idle flow shops, Comput. Ind. Eng. 46 (3) (2004) 461-466.
[18] L. Narain, P.C. Bagga, Flowshop/no-idle scheduling to minimise the mean flowtime, ANZIAM J. 47 (2005) 265-275.
[19] L. Narain, P.C. Bagga, Flowshop/no-idle scheduling to minimize total elapsed time,]. Global Optim. 33 (3) (2005) 349-367.
[20] P.J. Kalczynski,]. Kamburowski, On no-wait and no-idle flow shops with makespan criterion, Eur.]. Oper. Res. 178 (3) (2007) 677-685.
[21] M. Nawaz Jr., E.E. Enscore, I. Ham, A heuristic algorithm for the m-machine, n-job flow shop sequencing problem, OMEGA 11 (1) (1983) 91-95.
[22] L. Wang, Intelligence optimization algorithm with applications, Tsinghua University Press, Beijing, China, 2001.
[23] Q.-K. Pan, L. Wang, A novel differential evolution algorithm for no-idle permutation flowshop scheduling problems, Eur. J. Ind. Eng. 2 (3) (2008) 279-
297.
[24] Q.-K. Pan, L. Wang, No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm, Int. J. Adv. Manuf.
Technol. 39 (7-8) (2008) 796-807.
[25] E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, Eur.]. Oper. Res. 47 (1) (1990) 65-74.
[26] R. Ruiz, T. Stiitzle, A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem, Eur. J. Oper. Res. 177 (3) (2007)
2033-2049.
[27] E. Taillard, Benchmarks for basic scheduling problems, Eur.]. Oper. Res. 64 (2) (1993) 278-285.
[28] D. Karaboga, A new design method based on artificial bee colony algorithm for digital IIR filters,]. Franklin Inst. 346 (2009) 328-348.
[29] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm, Appl. Soft Comput. 8 (2008) 687-697.
[30] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math. Comput. 214 (1) (2009) 108-132.
[31] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Computer Engineering Department, Erciyes
University, Turkey, 2005
[32] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm, J. Global Optim. 39
(2007) 459-471.
[33] Q.-K. Pan, M.F. Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem, Inf.
Sci. 181 (12) (2011) 2455-2468.
[34] M.F. Tasgetiren, Q.-K. Pan, P.N. Suganthan, Angela H-L Chen, A discrete artificial bee colony algorithm for the permutation flow shop scheduling
problem with total flowtime criterion, Inf. Sci. 181 (16) (2011) 3459-3475.
[35] J. Grabowski, J. Pempera, Some local search algorithms for no-wait flow-shop problem with makespan criterion, Comput. Oper. Res. 32 (8) (2005)
2197-2212.
[36] X. Dong, H. Huang, P. Chen, An iterated local search algorithm for the permutation flowshop problem with total flowtime criterion, Comput. Oper. Res.
36 (2009) 1664-1669.
[37] Q.-K. Pan, MLF. Tasgetiren, Y.-C. Liang, A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem with makespan
and total flowtime criteria, Comput. Oper. Res. 35 (9) (2008) 2807-2839.
[38] L. Davis, Applying adaptive algorithms to epistatic domains. in: Proceeding of the international joint conference on artificial intelligence, 1985, pp.
162-164.
[39] D.E. Goldberg, R. Lingle, Alleles, loci, and the TSP, in: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum
Associates, Hillside, NJ, 1985, pp. 154-159.
[40] Kenneth R. Baker,].W.M. Bertrand, An investigation of due date assignment rules with constrained tightness, J. Oper. Manage. 1 (3) (1981) 109-120.

	A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion
	1 Introduction
	2 No-idle permutation flowshop scheduling problem algorithm
	2.1 Forward pass calculation
	2.2 Backward pass calculation
	2.3 Speed-up method for insertion neighborhood

	3 Discrete artificial bee colony algorithm
	3.1 Initialization
	3.2 Employed bee phase
	3.3 Onlooker bee phase
	3.4 Scout bee phase
	3.5 Local search

	4 Proposed genetic algorithm
	5 Computational results
	5.1 Computational results for the tight due date
	5.2 Computational results for the medium due date
	5.3 Computational results for the loose due date
	5.4 Best known solutions

	6 Conclusions
	Acknowledgement
	References

