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a b s t r a c t

This paper presents a novel improved fuzzy particle swarm optimization (IFPSO) algorithm to the intel-
ligent identification and control of a dynamic system. The proposed algorithm estimates optimally the
parameters of system and controller by minimizing the mean of squared errors. The particle swarm opti-
mization is enhanced intelligently by using a fuzzy inertia weight to rationally balance the global and
local exploitation abilities. In the proposed IFPSO, every particle dynamically adjusts inertia weight
according to particles best memories using a nonlinear fuzzy model. As a result, the IFPSO algorithm
has a faster convergence speed and a higher accuracy. The performance of IFPSO algorithm is compared
with advanced algorithms such as Real-Coded Genetic Algorithm (RCGA), Linearly Decreasing Inertia
Weight PSO (LDWPSO) and Fuzzy PSO (FPSO) in terms of parameter accuracy and convergence speed.
Simulation results demonstrate the effectiveness of the proposed algorithm.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

System identification is the first and substantial step to design a
controller. According to an identified system model, a controller
can be designed by means of various control methods to achieve
the required specification. The least-squares approach is a basic
technique often used for parameter identification. It has been suc-
cessfully used to identify the parameters in the static and dynamic
systems, respectively. However, it is only suitable for a structured
model that being linearized in parameters. Once the model struc-
ture is not linear in parameters, this approach may be invalid
(Astrom & Wittenmark, 1995). In addition, these techniques
exhibit some fundamental problems due to their dependence on
unrealistic assumptions such as unimodal performance landscapes
and differentiability of the performance function.

To solve this problem, the heuristic optimization techniques
seem to be more hopeful and promising alternatives to the tradi-
tional techniques. First, they do not rely on any assumptions such
as differentiability, continuity or unimodality. Second, they can es-
cape from local minima. Therefore, genetic algorithm (GA) (Cheng,
Cheng, & Xie, 2010; Kömürcü, Tutkun, Özölçer, & Akpınar, 2008;
Liao, 2009) and PSO (Lin, Chang, & Hsieh, 2008; Modares, Alfi, &
Fateh, 2010; Sun, 2009; Zhao & Yang, 2009) were successfully used
to estimate parameters for dynamic systems. Although the PSO has
shown some important advances by providing high speed of con-
vergence in specific problems, it exhibits some shortages (Modares
ll rights reserved.

.

et al., 2010). The Standard PSO (SPSO) has a poor ability to search at
a fine grain because it lacks velocity control mechanism (Angeline,
1998; Clerc & Kennedy, 2002). To overcome this disadvantage, Shi
and Eberhart (2001) used a fuzzy system to dynamically adapt the
inertia weight namely Fuzzy PSO (FPSO). Consequently, the perfor-
mance of PSO algorithm has improved well. This paper improves
the FPSO and introduced a new PSO, namely Improved FPSO (IFP-
SO), to achieve a higher accuracy and convergence. The proposed
IFPSO has two interesting characteristics: (1) to incorporate the
difference between particles into PSO so that it can simulate a
more precise biological model, the inertia weight is varied with
the number of particles and (2) to truly reflect the actual search
process, the inertia weight is set according to feedback taken from
particles best memories.

The system identification not only can be used to consider the
system characteristics but also the identified system can be applied
as part of control law for instance to design the indirect adaptive
control. This paper will also discuss an application of IFPSO algo-
rithm to design an optimal Proportional–Integral–Derivative
(PID) controller. Although most of industrial processes are complex
nonlinear systems, they are still controlled with classical PID con-
trol structures, which are tuned to give good results around a fixed
operating point. Under these circumstances, many PID tuning
methods were proposed. The Ziegler–Nichols (ZN) method is an
experimental one that is widely used, despite the requirement of
a step input application with stopped process (Shinskey, 1996).
One of the disadvantages of this method is the necessity of the
prior knowledge regarding plant model. Once the controller was
tuned by ZN method, a good but not optimum system response
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Fig. 1. PID controller design.
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will be reached. Many heuristic methods such as GA and PSO have
recently received much interest for achieving high efficiency and
searching global optimal solution in problem space (Visioli,
2001). In this paper, the PID controller gains are estimated by the
proposed IFPSO such that the objective function is minimized.

In order to evaluate the performance of IFPSO, simulation re-
sults are finally given to demonstrate the effectiveness of proposed
algorithm. The proposed algorithm has superior features in terms
of stable convergence characteristics and good computational effi-
ciency. Fast tuning of optimal PID controller parameters yields to
high quality responses.

2. Nonlinear system identification

A technique is developed for identification a nonlinear systems.
A class of discrete nonlinear systems is considered as follows:

xðkþ 1Þ ¼ f ðk; xðkÞ;uðkÞ; P1Þ
yðkÞ ¼ gðk; xðkÞ;uðkÞ; P2Þ

ð1Þ

where x e Rn is the state vector, u e R is the input, y e R is the output,
and P1 and P2 are vectors of system parameters. A model for system
is introduced to identify unknown parameters with the same struc-
ture as system in the form of

x̂ðkþ 1Þ ¼ f ðk; x̂ðkÞ;uðkÞ; P̂1Þ
ŷðkÞ ¼ gðk; x̂ðkÞ;uðkÞ; P̂2Þ

ð2Þ

The same system input u(k) is given to the system (1) and the iden-
tified model (2). The estimate parameter vectors are denoted using
P̂1 and P̂2. Let h = [h1, h2, . . ., hn]T be a rearranging vector containing
all parameters in P̂1 and P̂2, and n represents the number of un-
known parameters.

The basic idea of parameter estimation is to compare the sys-
tem responses with the parameterized model based on a perfor-
mance function giving a measure of how well the model
response fits the system response. In this study, the Sum of Square
Error (SSE) for a number of given samples is considered as the fit-
ness of estimated model parameters where the error is the differ-
ence between real and estimated responses. So, the fitness function
is defined as follow:

SSE ¼
XN

k¼1

½yðkÞ � ŷðkÞ�2 ¼
XN

k¼1

e2ðkÞ ð3Þ

where N is the number of given sampling steps, y(k) and ŷðkÞ are the
real and estimated values in each sample time, respectively. Our
objective is to determine system parameters by using heuristic
algorithms in such a way that the value of SSE is minimized and
approaching zero as much as possible.

3. PID design

Many control problems can be handled very well by PID control
(Astrom & Hagglund, 1995). The continuous PID control law is

uðtÞ ¼ KpeðtÞ þ Ki

Z t

0
eðsÞdsþ Kd _eðtÞ ð4Þ

where e is a difference between the desired and actual outputs, u is
the PID control law, parameters Kp, Ki and Kd are the proportional,
integral and derivative gains, respectively. The discrete control
law is obtained using trapezoidal approximations for Eq. (4) as

uðtÞ ¼ uðk� 1Þ þ Kp½eðkÞ � eðk� 1Þ� þ Ki
Ts

2
½eðkÞ þ eðk� 1Þ�

þ Kd
1
Ts
½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ� ð5Þ
where Ts is a sampling period. How to adopt these three gains to
meet the required performance is the most key in the PID control
system. For simplification, let h = [h1, h2, . . ., hn]T = [Kp, Ki, Kd]T be
the control gain vector. The objective function for the PID controller
is modified by

SSE ¼
XN

k¼1

½yrðkÞ � yðkÞ�2 ¼
XN

k¼1

e2ðkÞ ð6Þ

where yr(k) is the desired output, and y(k) is the system output.
Fig. 1 illustrates a PID controller using heuristic algorithm.
4. IFPSO algorithm

Unlike population based evolutionary algorithms, PSO is moti-
vated by the simulation of social behavior and each candidate solu-
tion is associated with a velocity. The candidate solutions, called
‘‘particles’’ then ‘‘fly’’ through the search space. In order to design
the PSO algorithm, a population with a number of particles is cre-
ated. Then, the velocity of every particle is constantly adjusted
according to the corresponding particle’s experience and the parti-
cle’s companions’ experiences. It is expected that the particles
move towards better solution areas. The fitness of every particle
can be evaluated according to the objective function of optimiza-
tion problem. The velocity of every particle will be calculated at
each iteration as follows:

vkþ1
i ¼ xvk

i þ c1r1ðpbestk
i � xk

i Þ þ c2r2ðgbestk � xk
i Þ ð7Þ

where in kth iteration, xi is the position of the particle i, pbesti is the
personal best position of this particle (memorized by every parti-
cle), gbest is the global best position among all particles (memorized
in a common repository), x is the inertia weight, c1 and c2 are accel-
eration coefficients known as the cognitive and social parameters,
respectively. Finally, r1 and r2 are two random numbers in the range
[0 1]. The new position of every particle can be worked out as
follows:

xkþ1
i ¼ xk

i þ vkþ1
i ð8Þ

The PSO algorithm performs iteratively until the goal is
achieved. Although SPSO has shown some important advances by
providing high speed of convergence in specific problems, it exhib-
its some shortages. It founds that SPSO has a poor ability to search
at a fine grain because of lack of velocity control mechanism
(Angeline, 1998). Many approaches are attempted to improve the
performance of SPSO by variable inertia weight. The inertia weight
is significant for the performance of PSO, which balances global
exploration and local exploitation abilities of the swarm. A big
inertia weight facilitates exploration; however it makes the con-
vergence longer. Conversely, a small inertia weight makes the con-
vergence fast; however it sometimes leads to local optimal. Hence,
linearly decreasing inertia weight and nonlinearly decreasing iner-
tia weight were proposed (Chang & Ko, 2009; Chatterjee & Siarry,



Table 1
The fuzzy rules.

NFCBP Inertia weight
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2006; Jiao, Lian, & Gu, 2008; Kennedy, Shi, & Eberhart, 2001;
Ratnaweera, Halgamuge, & Watson, 2004; Yang, Yuan, Yuan, &
Mao, 2007).

Nevertheless these algorithms improve the performance of PSO,
they cannot truly reflect the actual search process without any
feedback to know how far particle’s fitness are from the estimated
(or real) optimal value, when the real optimal value is known in
advance. To overcome this shortage, Shi and Eberhart (2001) used
a fuzzy system to dynamically adapt the inertia weight namely
Fuzzy PSO (FPSO). Consequently, the performance of PSO algorithm
has improved well. But, introducing the same inertia weight for all
particles, by ignoring the differences among particles perfor-
mances simulated a roughly animal background, not a more pre-
cise biological model, while the particles should be behaved
differently according to their states. For instance, the particle
which its fitness is far away from the real optimal value, a big
velocity is still needed to globally search the solution space and
thus its inertia weight must set to a large value. Conversely, for
the particle which its fitness is close to the real optimal value only
a small movement is needed and so inertia weight must set to a
small value to facilitate finer local explorations. However, the same
inertia weight is given to these opposite states.

Motivated by the aforementioned, this paper improves the FPSO
by calculating the inertia weight for every particle according to the
state of the particle. Consequently, every particle may have differ-
ent trade off between global and local search abilities, since every
particle locates in a complex environment and faces different situ-
ation. Due to this, a fuzzy logic is designed for every particle to pro-
vide the variations of weight factor as the output. The proposed
fuzzy system has two inputs. The first input is called the normal-
ized fitness of the current best position of ith particle (NFCBPi). This
input is determined as
NFCBPk
i ¼

Fðpbestk
i Þ � FKN

Fðpbest1
i Þ � FKN

ð9Þ
0

LS M1

0.5 
where Fðpbestk
i Þ is the fitness of the best previous position of ith

particle in kth iteration, FKN is the known real optimal solution value
and Fðpbest1

i Þ is the fitness of the of ith particle in 1st iteration
which is the worst acceptable performance of IFPSO for this particle.
The second fuzzy input is the current value of the inertia weight fac-
tor for ith particle xi. The fuzzy output is variation of factor xi.

Each fuzzy variable has three membership functions namely
small (S), medium (M) and large (L) as follows:
0.50 1

Fig. 2. Membership functions for NFCBP.
lSðxÞ ¼
1 if x < x1
x2�x

x2�x1
if x1 6 x 6 x2

0 if x2 < x

8><
>: ð10Þ
M LS1

0.5 

0
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lMðxÞ ¼
0 if x < x1
x�x1

x2�x1
if x1 6 x 6 x2

1 if x2 < x

8><
>: ð11Þ
Fig. 3. Membership functions for inertia weight.
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0 if x < x1
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Fig. 4. Membership functions for change of inertia weight.
where l represents the membership function, x1 and x2 are the crisp
inputs. The fuzzy rules are given in Table 1.
5. Simulation results and comparison

This section demonstrates the feasibility of the IFPSO system
identification and PID design. The simulation results are compared
with those obtained from Real-Coded Genetic Algorithm (RCGA),
Linearly Decreasing Inertia Weight PSO (LDWPSO) and Fuzzy PSO
(FPSO). In all PSO algorithms, we set c1 = c2 = 2 and Vmax and Vmin

are equal to the length of the search space (Chen, Qin, Liu, & Lu,
2005; Kennedy & Eberhart, 1995). In LDWPSO, x decreases linearly
from 0.9 to 0.4 (Shi & Eberhart, 1998). In addition, in RCGA, the
reproduction probability Pr, the crossover probability Pc and the
mutation probability Pm are set to 0.2, 0.3 and 0.2, respectively
(Chang, 2007). To perform fair comparison, the same computa-
tional effort is used in all of LDWPSO, FPSO, IFPSO and RCGA.
Thereby, the maximum generation G, population size S and
searching range of the parameters in RCGA are the same as those
in LDWPSO, FPSO and IFPSO. The membership functions for the
fuzzy inputs and output in both FPSO and IFPSO are illustrated in
Figs. 2–4.

In order to compare the performance of above algorithms, we
identify an unstable nonlinear system (Chang, 2007)

x1ðkþ 1Þ ¼ h1x1ðkÞx2ðkÞ; x1ð0Þ ¼ 1

x2ðkþ 1Þ ¼ h2x2
1ðkÞ þ uðkÞ; x2ð0Þ ¼ 1

yðkÞ ¼ h3x2ðkÞ � h4x2
1ðkÞ

ð13Þ

where the real parameters are assumed h = [h1, h2, h3, h4] =
[0.5, 0.3, 1.8, 0.9].



Table 2
A comparison on estimating parameters using RCGA, LDWPSO, FPSO and IFPSO.

h1 h2 h3 h4 SSE

Real parameters 0.5000 0.3000 1.8000 0.9000 –
RCGA 0.4845 0.2981 1.7974 0.8795 0.7562
LDWPSO 0.5001 0.3002 1.8000 0.9002 5.6020 � 10�11

FPSO 0.5000 0.3001 1.8001 0.9000 7.0236 � 10�14

IFPSO 0.5000 0.3000 1.8000 0.9000 3.8636 � 10�22
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5.1. Parameter estimation

The objective of parameter identification is to determine h as
accurately as possible. The relative variables utilized in optimiza-
tion algorithms are given by (Chang, 2007):
Fig. 5. A comparison

Fig. 6. A comparison

Fig. 7. A comparison
h1 min ¼ 0; h1 max ¼ 2; h2 min ¼ 0; h2 max ¼ 2;
h3 min ¼ 0; h3 max ¼ 2; h4 min ¼ 0; h4 max ¼ 2; N ¼ 8;
S ¼ 20; G ¼ 200

The known optimal value FKN is set to zero for the IFPSO. The
optimization process is repeated 20 times independently. A com-
parison between RCGA, LDWPSO, FPSO and IFPSO is listed in Ta-
ble 2. Figs. 5–8 show a great success of optimization process by
using IFPSO algorithm as compared with other for the identified
parameters h1, h2, h3 and h4, respectively. Moreover, the conver-
gence of optimal SSE at each generation is plotted in Fig. 9. This
comparison confirms the superiority of IFPSO algorithm in terms
of accuracy and convergence speed without the premature conver-
gence problem.
on estimating h1.

on estimating h2.

on estimating h3.



Fig. 8. A comparison on estimating h4.

Fig. 9. A comparison on convergence of objective function.

Fig. 10. A comparison on convergence of objective function for estimating PID gains.

Table 3
A comparison on estimating PID parameters using RCGA, LDWPSO, FPSO and IFPSO.

Kp Ki Kd SSE

RCGA 0.8413 0.9932 0.0095 1.331
LDWPSO 0.8218 1.0307 0.0585 1.135
FPSO 0.8214 1.0105 0.0617 1.1102
IFPSO 0.8225 1.0044 0.0428 1.1032
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5.2. PID controller design

Based on the above estimated results, a PID controller is de-
signed for this system using the proposed IFPSO. In this simulation,
the control objective is to minimize the difference between the
plant output y and the desired output yr = 2 in a regulating applica-
tion. The population size S, number of sampling steps N and max-
imum generation G are considered as 20, 1000 and 300,
respectively. Moreover, for the IFPSO, the known optimal value
FKN is zero. Fig. 10 represents a comparison on the convergence
of SSE for obtained PID parameters using different algorithms.
The initial search space for PID gains is defined as (Chang, 2007)

Kp min ¼ 0; Kp max ¼ 1; Kd min ¼ 0; Kd max ¼ 1;
Ki min ¼ 0; Ki max ¼ 1
The PID parameters as well as SSE for RCGA, LDWPSO, FPSO and
IFPSO are given in Table 3. It is obvious that the proposed algo-
rithm has superior features in terms of stable convergence charac-
teristics, good computational efficiency and accuracy. Fast tuning
of optimal PID controller parameters yields to high-quality
solutions.



A. Alfi, M.-M. Fateh / Expert Systems with Applications 38 (2011) 12312–12317 12317
6. Conclusion

In the present paper, a novel PSO algorithm has been introduced
for identifying system parameters and PID controller gains namely
IFPSO algorithm. In IFPSO, to incorporate the difference between
particles into PSO, the inertia weight is varied with the number
of particles. Due to this, for every particle, the fitness of its personal
best is considered as an input to the fuzzy system for calculating
the variation of its inertia weight. As a result, the IFPSO algorithm
has a faster convergence speed and a higher accuracy. The pro-
posed algorithm can simulate a more precise biological model
and truly reflect the actual search process by setting the inertia
weight according to feedback taken from particles best memories.
The simulation results obtained from RCGA, LDWPSO, FPSO and
IFPSO algorithms were compared. They have shown the superiority
of the proposed IFPSO algorithm in identifying system parameters
and PID control gains.
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