CHAPTEHR 1 4

Bayesian Filtering for State
Estimation of Dynamic
Systems

ORGANIZATION OF THE CHAPTER

This chapter focuses on an issue of fundamental importance: the estimation of the hid-
den state of a dynamic system, given a set of observations.
The chapter is organized as follows:

1. The introductory section, Section 14.1, motivates interest in the study of sequential
state estimation.

2. Section 14.2 discusses the notion of a state space and the different ways of modeling it.

3. The celebrated Kalman filter is derived in Section 14.3, which is followed by treat-
ment of square-root implementation of the filter for assured numerical stability in Sec-
tion 14.4. Section 14.5 derives the extended Kalman filter for dealing with situations
where the nonlinearity is of a “mild” sort.

4. Section 14.6 discusses Bayesian filtering, which provides a unifying framework for the

state estimation of dynamic systems, at least conceptually; this filtering model includes
the Kalman filter as a special case.

5. Section 14.7 presents a description of the cubature rule for direct numerical approx-
imation of the Bayesian filter, paving the way for the description of a new filter, the
cubature Kalman filter, which builds on ideas from Kalman filter theory.

6. Section 14.8 addresses another approach for approximating the Bayesian filter; this one
is rooted in Monte Carlo simulation. In particular, a detailed treatment of particle filters
is presented. A computer experiment comparing the performance of the extended
Kalman filter and a particular form of the particle filter is presented in Section 14.9.

7. Section 14.10 discusses the role of Kalman filtering in modeling different parts of
the human brain.

The chapter concludes with a summary and discussion in Section 14.11.

14.1 INTRODUCTION

In the neurodynamic systems studied in Chapter 13, the main issue of concern was sta-
bility. In this chapter, we consider another important issue: estimation of the state of a
dynamic system, given a sequence of observations dependent on the state in some fashion.
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The observations take place in discrete time, not for mathematical convenience, but
because that is how they arise naturally. Moreover, the state is not only unknown, but also
hidden from the observer. We may therefore view the state-estimation problem as an
inverse problem.

As an illustrative example, consider a dynamically driven multiplayer perceptron
with feedback loops from one layer of the network to a preceding one (e.g., from a hid-
den layer to the input layer). The state of the network could be viewed as a vector made
up of all the synaptic weights of the network, arranged in some orderly fashion. What
we would like to do is to use sequential state-estimation theory to adjust the weight vec-
tor of the network in a supervised manner, given a training sample. This application is
discussed in detail in the next chapter. For this application, however, we need a sequen-
tial procedure for state estimation, the rationale for which is deferred to that chapter.

The first rigorous treatment of sequential state-estimation theory appeared in
Kalman'’s classic paper, published in 1960. Kalman’s exposition was based on two sim-
plifying assumptions for mathematical tractability:

1. The dynamic system is entirely linear.

2. The noise processes perturbing the state of the dynamic system and the observables
are additive and Gaussian.

In making these assumptions, Kalman derived an optimal estimate of the unknown state
of the system, the computation of which was performed recursively. Within its domain
of applicability, the Kalman filter has undoubtedly withstood the test of time.

Sequential state-estimation theory remains an active area of research. Much of
this research has focused on how to deal with the practical issues of nonlinearity and non-
Gaussianity. Under one or both of these conditions, optimal estimation of the state is no
longer an option. Rather, we have to settle on the realization of an approximate estimator.
The challenge is how to derive such an estimator that is both principled and computa-
tionally efficient.

14.2 STATE-SPACE MODELS

All dynamic systems share a basic feature: the state of the system. We formally define this
feature as follows:

The state of a stochastic dynamic system is defined as the minimal amount of information
about the effects of past inputs applied to the system that is sufficient to completely describe
the future behavior of the system.

Typically, the state is not measurable directly. Rather, in an indirect manner, the
state makes its effect on the outside world measurable through a set of observables. As
such, the characterization of an unknown dynamic system is described by a state-space
model, which embodies a pair of equations:

1. The system (state) model, which, formulated as a first-order Markov chain,describes
the evolution of the state as a function of time, as shown by

X,+1 — an(xn, (R)n) (]_41)
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FIGURE 14.1 Generic state-space model of a time-varying, nonlinear dynamic system, where
z I denotes a block of unit-time delays.

where n denotes discrete time, the vector x,, denotes the current value of the state, and
X, 1 denotes the subsequent value of the state; the vector w,, denotes dynamic noise,
or process noise, and a,(+,) is a vectorial function of its two arguments.

The measurement (observation) model, which is formulated as

y}’l = bn(xm vl’l) (14'2)

where the vector y, denotes a set of observables, the vector v, denotes measurement
noise, and b,(+,*) denotes another vectorial function.

The subscript n in both a, and b,, is included to cover situations where these
two functions are time varying. For the state-space model to be of practical value,
it must closely describe the underlying physics of the system under study.

Figure 14.1 depicts a signal-flow graph representation of the state-space model

defined by Eqgs. (14.1) and (14.2), and Fig. 14.2 depicts the state’s evolution across time
as a Markov chain. The time-domain representation of the model depicted in these two
figures offers certain attributes:

mathematical and notational convenience;
a close relationship of the model to physical reality;
a meaningful basis of accounting for the statistical behavior of the system.
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FIGURE 14.2 Evolution of the state across time, viewed as a first-order Markov chain.
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Justifiably, the following assumptions are made:

1. The initial state x, is uncorrelated with the dynamic noise w, for all n.
2. The two sources of noise, w, and v,, are statistically independent, which means that

Flw,,wi] =0 forallnandk (14.3)

This equation is a sufficient condition for independence when w,, on v, are jointly
Gaussian.

It is noteworthy that the Markovian model of Fig. 14.2 is fundamentally different
from the Morkovian model considered in Chapter 12, which covered dynamic program-
ming. Whereas in dynamic programming the state is directly accessible to the observer,
in sequential state estimation the state is hidden from the observer.

Statement of the Sequential State-Estimation Problem

Given an entire record of observations consisting of yi, Y, ..., Y., CcOmpute an estimate of the
hidden state x, that is optimal in some statistical sense, with the estimation being performed
in a sequential manner.

In a way, this statement embodies two systems:

¢ the unknown dynamic system, whose observable y, is a function of the hidden state;

¢ the sequential state estimator or filter, which exploits the information about the
state that is contained in the observables.

In a loose sense, we may view this problem as an “encoding—decoding” problem, with
the observables representing an encoded version of the state and the state estimate pro-
duced by the filter representing a decoded version of the observables.

In any event, the state-estimation problem is called prediction if k > n, filtering if
k = n, and smoothing if k < n. Typically, a smoother is statistically more accurate than
both the predictor and filter, as it uses more observables. On the other hand, both pre-
diction and filtering can be performed in real time, whereas smoothing cannot.

Hierarchy of State-Space Models

The mathematical difficulty of solving the state-estimation problem is highly dependent
on how the state-space model is actually described, leading to the following hierarchy
of models:

1. Linear, Gaussian model. In this model, which is the simplest of state-space mod-
els, Egs. (14.1) and (14.2) respectively reduce to
X, 41 = Ay X, T 0, (14.4)
and
y, = Bx, + v, (14.5)
where A, 18 the transition matrix from state x,, to state x,,.; and B,, is the measurement

matrix. The dynamic noise w, and measurement noise v, are both additive and assumed
to be statistically independent zero-mean Gaussian processes' whose covariance matrices
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are respectively denoted by Q,, , and Q, .. The state-space model defined by Eqs. (14.4)
and (14.5) is indeed the model that was used by Kalman to derive his recursive filter,
which is mathematically elegant and devoid of any approximation. Kalman filters are dis-
cussed in Section 14.3.

2. Linear, non-Gaussian model. In this second model, we still use Egs. (14.4) and
(14.5), but the dynamic noise w, and measurement noise v, are now assumed to be addi-
tive, statistically independent, non-Gaussian processes. The non-Gaussianity of these
two processes is therefore the only source of mathematical difficulty. In situations of
this kind, we may extend the application of the Kalman filter by using the Gaussian-
sum approximation, summarized as follows:

Any probability density function p(x) describing a multidimensional non-Gaussian vec-
tor, represented by the sample value x, can be approximated as closely as desired by the
Gaussian-sum formula

px) = D) (146)

N
for some integer N and positive scalers c;, with E ¢; = 1. The term N (X;, 3,;) stands for a
i=1

Gaussian (normal) density function with mean X; and covariance matrix 3, for i = 1,2, ..., N.

The Gaussian sum on the right-hand side of Eq. (14.6) converges uniformly to the given
probability density function px(x) as the number of terms, N, increases and the covari-
ance matrices 3, approach zero for all i (Anderson and Moore, 1971). To compute the
Gaussian-sum approximation of Eq. (14.6) for a prescribed probability density function
p(x), we may, for example, use a procedure based on the expectation-maximization (EM)
algorithm; this algorithm was described in Chapter 11. Then, having computed this approx-
imation, we may use a bank of Kalman filters to solve the sequential state-estimation
problem described by a linear, non-Gaussian model (Alspach and Sorenson, 1972). Note,
however, that the terms in a Gaussian-sum model tend to grow exponentially over the
course of time, which may therefore require the use of a pruning algorithm.

3. Nonlinear, Gaussian model. The third model in the hierarchy of state-space
models of increasing complexity is formulated as

X,+1 = a,(x,) + o, (14.7)
and
Y. = by(x,) + v, (14.8)

where the dynamic noise w, and measurement noise v, are both assumed to be additive

and Gaussian. This is where we start to experience mathematical difficulty in solving a

sequential state-estimation problem. There are basically two radically different
approaches for computing an approximate solution to the problem:

(i) Local approximation. In this first approach to nonlinear filtering, the nonlinear

function a,(+) in the system model of Eq. (14.7) and the nonlinear function b,(+)

in the measurement model of Eq. (14.8) are approximated around localized estimates



736  Chapter 14 Bayesian Filtering for State Estimation of Dynamic Systems

of the state, whereby both equations are linearized. The stage is then set for apply-

ing the Kalman filter to compute the approximate solution. The extended Kalman

filter discussed in Section 14.5 is an example of the local-approximation approach
to nonlinear filtering.

(ii)) Global approximation. In this second approach to nonlinear filtering, the solu-
tion is formulated in a Bayesian estimation framework in such a way that difficult
interpretations inherent to the problem are made mathematically tractable.
Particle filters, discussed in Section 14.7, belong to this second approach to
nonlinear filtering.

4. Nonlinear, non-Gaussian model. This last class of state-space models is
described by Eqgs. (14.1) and (14.2), where both the system model and the measurement
model are nonlinear, and the dynamic noise o, and measurement noise v,, are not only
non-Gaussian, but may also be nonadditive. In this kind of scenario, particle filters are
currently the method of choice, but not necessarily the only method, for solving the
sequential state-estimation problem.

14.3 KALMAN FILTERS

The state-space model for the Kalman filter is defined by Eqgs. (14.4) and (14.5). This
linear Gaussian model is parameterized as follows:

e the transition matrix A, ,, which is invertible;

¢ the measurement matrix B,, which, in general, is a rectangular matrix;

¢ the Gaussian dynamic noise m,, which is assumed to have zero mean and covari-
ance matrix Q,, ,;

e the Gaussian measurement noise v,, which is assumed to have zero mean and
covariance matrix Q, .

All these parameters are assumed to be known. We are also given the sequence of observ-
ables {y,}7=1. The requirement is to derive an estimate of the state x, that is optimized
in the minimum mean-square-error sense. We will confine the discussion to filtering for
which k = n, and one-step prediction for which k=n + 1.

The Innovations Process

An insightful way of deriving this optimum estimate is to use the so-called innovations
process associated with the observable y,, which is defined by

Q, =Yy, — yn|n—1 (149)
where §,,— is the minimum mean-square-error estimate of y,,, given all the observables

up to and including time n — 1. In effect, we can say the following:

The innovations process a,, is that part of the observable y,, that is new, since the predictable

n—I1

part of y,—namely, §,),——is completely determined by the sequence {y;};-1.
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The innovations process has some important properties:

Property 1. The innovations process o, associated with the observable y,, is orthog-
onal to all past observables y;,y,, ..., ¥,_1, as shown by

Fa,yi] =0, 1=k=n-—1 (14.10)

Property 2. The innovations process consists of a sequence of random vectors that
are orthogonal to each other, as shown by

Floaal] =0, l=<k=n-—1 (14.11)

Property 3. There is a one-to-one correspondence between the sequence of ran-
dom vectors {y;, ¥, -.., ¥}, representing the observed data, and the sequence {a;,
a,, ..., o}, representing the innovations process, in that the one sequence may be
obtained from the other by means of linear stable operators without any loss of
information. Thus, we may write

{)’1’ YZv eeey yn} ~ {al’a2a ceey an} (1412)

In light of these properties, we now see why it is easier to work with the innova-
tions process rather than the observables themselves: In general, the observables
are correlated, whereas the corresponding elements of the innovations processes
are not.

Covariance Matrix of the Innovations Process

Starting with the initial condition x,, we may use the system model of Eq. (14.4) to
express the state at time k as
k=1

X, — Ak,()XO + EAk.iwi (1413)
i=1

Equation (14.13) indicates that the state x; is a linear combination of x;, and w;, ®,, ...,
1.

By hypothesis, the measurement noise v, is uncorrelated with both the initial state
x, and the dynamic noise w;. Accordingly, postmultiplying both sides of Eq. (14.13) by
v! and taking expectations, we obtain

Elxevl] =0, k,n=0 (14.14)
Correspondingly, we find from the measurement equation of Eq. (14.5) that
Elywi] = 0, O=k=n-—1 (14.15)
and
Elysw:] =0, O=k=n (14.16)

Given the past observations yy, ..., y,_, we also find from the measurement equa-
tion of Eq. (14.5) that the minimum mean-square estimate of the current observation

Yy, 1s
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yn|n—1 = Bn§n|n—l + i}n|n—1 (1417)

where v,),_; is the corresponding estimate of the measurement noise, given the past
observations yy, ..., y,-i. The estimate v ,,_, is zero, since v, is orthogonal to the past
observations in light of Eq. (14.15). We may therefore reduce Eq. (14.17) to

5’n|n—1 = Bnin|n—1 (1418)
Substituting Egs. (14.5) and (14.18) into Eq. (14.9) and then collecting terms, we obtain
o, =Beg,,_, +v, (14.19)

where the new term €,,_ is the state prediction-error vector, defined by
8n,n—l =X, — in|n—l (1420)

In Problem 14.1, it is shown that g,,_, is orthogonal to both the dynamic noise w,,
and the measurement noise v,. Then, defining the covariance matrix of the zero-mean
innovations process o,, as

R, = F[a,al] (14.21)
and using Eq. (14.19), we may readily show that
R, =B,P, B, +Q,, (14.22)
where Q, , is the covariance matrix of the measurement noise v, and the new term
Pt = E[&,—185n-1] (14.23)

is the prediction-error covariance matrix. Equation (14.22) is our first entry into the
Kalman filtering algorithm.

Estimation of the Filtered State Using the Innovations Process:
The predictor-corrector formula

Our next task is to derive the minimum mean-square-error estimate of the state x; at
some time i, based on the innovations process. To this end, given the innovations sequence
ay, o, ..., o, we first express the corresponding estimate of x; as the linear expansion

ﬁi|n = kZlCi'kak (14.24)

where {C, ; }7- is a set of matrices assuming the role of coefficients of the expansion for
time i. The state-prediction error and the innovations process satisfy the following orthog-
onality condition (see Problem 14.3):

Elep,ar] = 0 fork =1,2,...,n

14.2
andi = n ( )

Hence, substituting Eq. (14.24) into Eq. (14.25) and using the orthogonality property of
the innovations process described in Eq. (14.11), we obtain

E[xa;] = C..Ry
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where, as defined previously, R, is the convariance matrix of the innovations process.
Solving this equation for the coefficient matrix C; ;, we thus have

Ci = E[xef R,
The use of this expression in Eq. (14.24) yields

Xip, = kZl[E[xiag]R;lak (14.26)

For i = n, corresponding to the process of filtering, we may use Eq. (14.26) to
express the filtered estimate of the state as

n
3\(n|n = E [E[Xnag]Rzlak
k=1

n—1
= D E[x,0f R'ey + E[x,0! R, ', (14.27)
k=1
where, in the second line, the term corresponding to k = n has been isolated from the
summation. In order to put Eq. (14.27) into an interpretable form, we first use Eq. (14.26)
to write

n—1

§n|n—1 = kzl[E[Xnag]Rzlak (1428)

To simplify the second term in Eq. (14.27), we introduce the following definition:
G, = E[x,a]R;! (14.29)

Accordingly, we may now express the filtered estimate of the state as the recursion:

§n|n = §n|n_1 + Gnan (14.30)
The two terms comprising the right-hand side of Eq. (14.30) may now be interpreted as
follows:

1. The term X,,_, represents one-step prediction: It represents a predicted estimate
of the state x,,, given all the observations up to and including time n — 1.

2. The product term G, represents a correction term: The innovations process a,,,
representing new information brought to the filtering process by the observationy,,
is multiplied by a “gain factor” G,,. For this reason, G, is commonly referred to as
the Kalman gain, in recognition of the pioneering work done by Kalman in his
classic 1960 paper.

In light of these two insightful points, Eq. (14.30) is known as the predictor-corrector
formula in Kalman filter theory.

Computation of the Kalman Gain

In Eq. (14.30), we now have our second equation for the recursive computation of the
Kalman filter. However, for this equation to be of practical value, we need a formula for
computing the Kalman gain that befits a recursive procedure for estimating the state.
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With this objective in mind, we use Eq. (14.19) to write
E[x,e,] = E[x,(B,&yu—1 + v,)"]
= [E[Xnegn—l]Bg
where, in the second line, we used the fact that the state x,, and measurement noise v,
are uncorrelated. Next, we note that the state-prediction error vector €, is orthogo-
nal to the state estimate X ,,_; in accordance with the principle of orthogonality. There-
fore, the expectation of the outer product of x,,,_; and &,,,_; is zero, so the expectation
E[x,a ] is unaffected if we replace x, with €,,_,. We may thus write
[E[Xnag] = [E[8n|n—1€£|n—l:|B£
= Pn|n—1B£
Therefore, using this formula for the expectation E[x,a’ ] in Eq. (14.29), we may express
the Kalman gain G, in terms of the prediction-error covariance matrix P,,_; as
G,=P,_B/R, (14.31)

which is the third equation for the recursive computation of the Kalman filter.

Riccati Difference Equation for Updating the Prediction-Error
Covariance Matrix

To complete the recursive procedure for computing the Kalman filter, we need a recursive
formula to update the prediction-error covariance matrix from one iteration to the next.

To tackle this last step of the state-estimation procedure, we first replace n with
n + 1in Eq. (14.20):

8n+1|n = Xp41 — Xn+1|n

Next, we find it instructive to express the predicted estimate of the state in terms of its
filtered estimate. To this end, replacing n with n + 1 in Eq. (14.28) and using Eq. (14.4),
we write

Xptiln = 2 E[x, 110k JRy oty
k=1
= E [E[(An-‘rl,nxn + wn)az]Rzlak
k=1

n
= An+1,n 2 [E[Xnag]Rzlak
k=1

= An+1,n§(n|n (1432)

In the third line of Eq. (14.32), we used the fact that the dynamic noise w,, is indepen-
dent of the observations, and therefore the expectation [E[mnai] 1s zero; and finally, we
used the first line of the defining formula of Eq. (14.27) for the filtered estimate X,,,,. With
the relationship of Eq. (14.32) between the predicted and filtered estimates of the state
x, at hand, we now use the formula for €, ), to write
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~

8n-i-1|n = (An-i-l,nxn + ("')n) - An+1,nxn|n

State x,,,, Predicted estimate

A

X 141jn

= Aiia(X, — X)) T 0,
=A 8, o, (14.33)
where the state-filtering-error vector is defined by
€ = X, — X, (14.34)

Hence, recognizing that the state-filtering-error vector €,, and the dynamic noise w,
are uncorrelated, we may express the prediction-error covariance matrix as

Pn+1|n = [E[8n+1|n8£+1|n]
= An+1,nPn|nA£+1,n + Qw,n (1435)

where Q,,, is the covariance matrix of the dynamic noise w,. In Eq. (14.35), we have
introduced our last parameter, namely, the filtering-error covariance matrix, which is
defined by

Pn|n = [E[811|n8r];|n} (1436)

To complete the recursion cycle in the Kalman filtering algorithm, we need a for-
mula for computing the filtering-error covariance matrix P,,. To this end, we first use Eq.
(14.30) in Eq. (14.34), obtaining

8n|n =X, — §n|n—1 - Gnan
= 8n|n—1 - Gnan
Hence, using the definition of Eq. (14.36), we obtain
Pn|n = [E[(en|n—1 - Gnan)(8n|n—1 - Gnan)T]
= [E[Enln—lery;ln—l] - Gn[E[anEzIz]n—l] - [E[8n|n—1a£]G£ + (;n[E[()‘n()‘rTz]Gﬁw
= Pn|n—1 - Gn[E[anerﬁn—l] _ [E[en|n—1a£]G£ + GanGZ; (1437)

Next, we note that since the estimate X, is orthogonal to the innovations process a,,,
we have

[E[8n|n—1a£:| = [E[(Xn - &n|n—l)a£]
= E[x,a!]
Similarly,
[E[aneﬁn—l] = [E[anXZ]

By using this pair of relationships and the defining formula of Eq. (14.29) for the Kalman
gain, it is a straightforward matter to show that

Gn[E[an8£|n—1] = [E[8n|n—1a£]G£ = GanG£
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Accordingly, Eq. (14.37) is reduced to
Pn|n = Pn|n—1 - GanGZ;

Finally, using the formula of Eq. (14.31) for the Kalman gain and invoking the symmet-
ric properties of the covariance matrices R, and P, _,, we write

Pn|n = Pn|n—l - GanPn|n—1 (1438)

Thus, the pair of equations in Egs. (14.38) and (14.35) provides the means of updat-
ing the prediction-error covariance matrix. In particular, Eq. (14.38) is commonly
referred to as the discrete form of the Riccati equation, which is well known in control
theory.

Together with Eq. (14.32), this pair of equations completes the formulation of the
Kalman filtering algorithum.

Summary of the Kalman Filter

Table 14.1 presents a summary of the variables and parameters used to formulate the
solution of the Kalman filtering problem. The input of the filter is the sequence of observ-
ables yy, ¥,, ..., ¥, and the output of the filter is the filtered estimate X,,,. The compu-
tational procedure is recursive, as summarized in Table 14.2. The summary also includes
the initial conditions needed to start the recursive computation. Note that the formula
for the innovation «,, in Table 14.2 follows from Eqgs. (14.9) and (14.18).

The version of the Kalman filter summarized in Table 14.2 is commonly referred
to as the covariance (Kalman) filtering algorithm.” This terminology follows from the
fact that the algorithm propagates the covariance matrix P, _, across one complete cycle
of the recursive computation, where P,,_, refers to the prediction.

TABLE 14.1 Summary of the Kalman Variables and Parameters

Variable Definition Dimension
X, State at time n Mby1
A Observation at time n Lbyl
A, Invertible transition matrix from state at time » to state Mby M
attime n+1
B, Measurement matrix at time » Lby M
Q... Covariance matrix of dynamic noise w,, Mby M
Q.. Covariance matrix of measurement noise v,, LbyL
X1 Predicted estimate of the state at time n, given the observations M by 1
Yoo Yo oo Yo
Xl Filtered estimate of the state at time 7, given the observations ~ M by 1
Yo Y25 5 ¥
G, Kalman gain at time n Mby L
, Innovations process at time 7 Lbyl
R, Covariance matrix of the innovations process a,, LbyL
P, Prediction-error covariance matrix M by M

P, Filtering-error covariance matrix M by M
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TABLE 14.2 Summary of the Kalman Filter Based on Filtered Estimate of the State

Observations = {y1, y,, ..., ¥}
Known parameters
Transition matrix = A, ,
Measurement matrix =B,
Covariance matrix of dynamic noise = Q,, ,
Covariance matrix of measurement noise = Q

v

Computation:n=1,2,3, ...
Gn = Pn|n*lBrY;[BnPn|n*1Bg + (21),}1]71
o, = Yn - Bnglﬂn—l

3\‘nln = &nln—l + Gnan

3\‘n+l|n = An+l,n§nln

Pn|n = Pnln—l - GanPnln—l

Py, = A11+I,11Pn|leZ+l,lz + Q..

Initial conditions
X0 = E[x]
Py = E[(x; — E[x])(x; — E[x,])"] = 10,
The matrix I, is a diagonal matrix with diagonal elements all set equal to 87!, where § is a small
number.

Figure 14.3 depicts a signal-flow graph of the Kalman filter, where z ' I represents
a bank of unit-time delays. This figure clearly shows that the Kalman filter is a double-
loop feedback system. One feedback loop, embodying the transition matrix A, ,,_; of the
system (state) model, acts as the predictor. The second feedback loop, embodying the
matrix B, of the measurement model, acts as the corrector. These two feedback loops
work together to generate the filtered estimate of the state x,—namely, X ,,—in response
to the observation y,. It follows, therefore, that the Kalman filter, as depicted in Figure
14.3,is indeed a causal system in that it is capable of operating in real time. In fact, we
also have an overall feedback loop that encompasses these two feedback loops.

The Kalman gain G,,, central to the operation of the Kalman filter, varies with time 7.
Thus, we say that the Kalman filter is a time-varying filter. This property holds even if the
state-space model of the original dynamic system is time invariant.

Filtered

Observation - " - - estimate
o > o, | > G,a, |:> % | > of tha <ot
Lo
- +

Famt) |

n AN.I’I*l @
yn\n*l < l Xn\nfl <:I Xn*l\n*l

FIGURE 14.3 Signal-flow graph of the Kalman filter, depicting it as a double-loop feedback
system.
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14.4 THE DIVERGENCE PHENOMENON AND SQUARE-ROOT FILTERING

The covariance filtering algorithm summarized in Table 14.2 is prone to serious numer-
ical difficulties that are well documented in the literature (Kaminski et al., 1971; Bier-
man and Thornton, 1977).

In practice, numerical difficulties can arise in two basic ways. One way is through
numerical imprecision. To be specific, the matrix P,), is computed as the difference
between two nonnegative-definite matrices, as shown in Eq. (14.38). Hence, unless the
numerical accuracy employed at every iteration of the algorithm is high enough, there
is a possibility that the matrix resulting from this computation will violate the proper-
ties of symmetry and nonnegative definiteness. But, according to Eq. (14.36), P, is a
covariance matrix and must therefore be nonnegative definite. We thus have a conflict-
ing situation between theory and practice, with the result that the presence of numer-
ical inaccuracies in the computation leads to “unstable” behavior of the Kalman filter.
This undesirable behavior of the Kalman filter is commonly referred to as the divergence
phenomenon.

The divergence phenomenon may also arise in practice in another way. The
derivation of the Kalman filter is based on the linear, Gaussian state-space model,
described in Egs. (14.4) and (14.5). Serious deviations of this model from the under-
lying physics of the dynamic system under study may also contribute to unstable
behavior of the algorithm. After all, the algorithm is driven by a real-life sequence
of observables, whereas mathematical derivation of the algorithm is based on a
hypothesized state-space model. Here, again, we have another conflicting situation
between theory and practice, which, in its own way, could lead to divergence of the
algorithm.

Given these practical relations, we may now pose the following question:

How do we overcome the divergence phenormenon so as to assure stable operation of the
Kalman filter in practice?

A practical answer to this important question is discussed next.

Square-Root Filtering

A mathematically elegant and computationally plausible method of resolving the diver-
gence problem is to use square-root filtering. Basically, in this modification of the Kalman
filter, we use numerically stable orthogonal transformations at every iteration of the
algorithm. Specifically, the matrix P,, is propagated in its square-root form by applying
the Cholesky factorization, according to which we may write

P,, = P.?P1? (14.39)

where the term P,,|n is reserved for a lower trzangular matrix and Pn|n is the transposed
term. In linear algebra, the Cholesky factor Pn|,, is commonly referred to as the square
root of the matrix P, . The very important point to note here is that the matrix product
Pn|n P,,|n is not likely to become indefinite, because the product of any square matrix and
its transpose is always nonnegative definite. Indeed, even 1n the presence of numerical
errors, the matrix conditioning of the Cholesky factor P,,|n 1s generally better than that
of P, itself.
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Square-Root Implementation of the Kalman Filter

A lemma in matrix algebra, called the matrix factorization lemma, is pivotal to the
derivation of square-root filtering algorithms. Consider any two L-by-M matrices X and
Y with the dimension L = M. The matrix factorization lemma states the following
(Stewart, 1973; Golub and Van Loan, 1996):

The matrix equality XX” =YY holds if, and only if, there exists an orthogonal matrix
O such that

Y = X0 (14.40)

To prove this lemma, we express the matrix product YY” as
YY' = XO(X0)"

= X0 X"

= Xx’
In the last line of this equation, we invoked the defining property of the orthogonal
matrix O:

The product of an orthogonal matrix with its transpose is equal to the identity matrix.
As a corollary to this property, we may equivalently write
0'=0" (14.41)

That is, the inverse of an orthogonal matrix is equal to its own transpose.

With the matrix factorization lemma at our disposal, we may now proceed with the
derivation of the square-root covariance implementation of the Kalman filter. To begin,
we first use Eq. (14.31), defining the gain matrix G(n), in Eq. (14.38), obtaining

Pn|n = Pn|n—1 - Pn|n—1B£R;1BnPn|n—1 (1442)
where the matrix R, is itself defined by Eq. (14.22), reproduced here for convenience of
presentation:

Rn = BnPn|n—1B£ + Qv,n

Examining the reformulated Riccati equation of Eq. (14.42), we find that the expression
on its right-hand side consists of three distinct matrix terms:

M-by-M matrix: covariance matrix of the predicted state P, i;
L-by-M matrix: measurement matrix B, multiplied by P, 4;
L-by-L matrix: covariance matrix R, of the innovations process.

Keeping in mind the different dimensionalities of these three matrix terms, we may
order all three of them in a compatible way in the N-by-N block matrix

Rn B 1
Hn pu— e ———————————— [ T T _—

S e - (14.43)
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where, in the second line, we inserted the formula for R,. The size of the matrix in Eq.
(14.43), denoted by N, equals L + M. The new block matrix H,, is nonnegative-definite
by definition. We may therefore apply the Cholesky factorization to it, obtaining

e A el |
H, = | e = || s (14.44)
1 1/2 ' 1/2
o Py P, B | P

1 Tnn—1

where P,1,|/,12_1 is the square root of the covariance matrix P,;,, ; and O is a null matrix.
The matrix product on the right-hand side of Eq. (14.44) may be interpreted as the

product of matrix X,,, introduced earlier, and its transpose X,. The stage is therefore set for

invoking the matrix factorization lemma, according to which the use of Eq. (14.40) yields

BRI Yy, | O
""" 1 2 """" 0, = ''''''' - (14.45)
O i Pn|/n—1 Y21, n i Y22, n

X

n le

where the matrix @, is an orthogonal matrix. To be more specific, 0, is an orthogonal
matrix that operates on X,, in such a way that the resulting matrix Y,, is a lower trian-
gular matrix; that is, all the elements of Y,, above its main diagonal are zero. It is because
of this action that the matrix @, is also referred to as an orthogonal rotation. Invoking
the orthogonality property of ®,, we may expand on Eq. (14.45) by writing

QL iBPL |[QF O Yi, 0" || Y. | Yh,
s | e | = || | | (14.46)
o P, P’ Bl | P!/ Yo, i Yol O 1YL,

| njn—1

Xu XZ; Yu YT

Expanding the matrix products X, X! and Y, Y’ and then equating corresponding terms
in the two sides of Eq. (14.46), we get three identifies:

Qv,n + BnPn|n—lBi]1w = Yll,nY{l,n (1447)
BnPn|n—1 = Yll,anl,n (1448)
Pn|n—1 = Y21,anl,n + Y22,anZ,n (1449)

The left-hand side of Eq. (14.47) is recognized as the covariance matrix R,,, which is fac-
torizable into RY/?R%/2. The identity in Eq. (14.47) is therefore satisfied by setting the first
unknown as follows:

Y, =R}/ (14.50)

Next, substituting this value of Yy, , into the identify in Eq. (14.48) and solving for Y, ,,,
we find the second unknown:

Y21,n = Pn|n—1B£R;T/2 (1451)

In light of the definition of the Kalman gain G,,, developed previously in Eq. (14.31), we
may also express Y,; , as

Y, , = G,R)? (14.52)



Section 14.4 The Divergence Phenomenon and Square-Root Filtering 747

Moreover, substituting the value of Y, , given in Eq. (14.51) into Eq. (14.49), solving for
the matrix product Y, Y3, and then using Eq. (14.42), we get

Y22,anZ,n = Pn|n—1 - Pn|n—lB£R;1BnPn|n—l

=Py,
Factorizing the covariance matrix P, , into P,11|/,12P£|22, we find the third unknown:
1/2
Yzz)n = Pn|n (1453)

With all three nonzero submatrices of Y,, determined, we may now fill in the unknowns
in Eq. (14.45), obtaining

QUi I Bp, Ry O
T L (1454)

In the final solution derived in Eq. (14.54), we may now distinguish between two
well-defined arrays of numbers that deserve close scrutiny:

1. Prearray. This array of numbers, on the left-hand side of Eq. (14.54), is operated
on bly the orthogonal rotation ®,, which is designed to annihilate the submatrix
BnPn(nz_l, element by element. The measurement matrix B, and the covariance
matrix of the measurement noise, Q, ,, are both given parameters. The square root
P,1,|/,l2_1, being an old value that is being updated, is also known. Therefore, the sub-
matrices constituting the prearray are all known at time #.

2. Postarray. This second array of numbers, on the right-hand side of Eq. (14.54), is
a lower triangular matrix that results from the annihilation performed by the
orthogonal rotation on the prearray. In particular, the inclusion of the square root
Q! in the prearray induces the generation of two useful matrices:

e the matrix R}?, representing the square root of the covariance matrix of the
innovations process a,;

e the matrix product G, R}, which makes it possible to compute the Kalman gain.

One other important matrix resulting from computing the postarray is the square
root of the filtering-error covariance matrix, P,

With all of this information extracted from the postarray, we are ready to summarize the
computations involved in the square-root covariance filtering algorithm, as listed in
Table 14.3. A complete recursion cycle of the algorithm consists of the transformation
of the prearray into the postarray and the computation of updated parameters, which
are respectively listed under items 3 and 4 of the table. From this table, it is apparent that
the algorithm does indeed propagate the square root of the prediction-error covariance
matrix—namely, Pn|n2_ 1

Givens Rotations

Thus far in formulating the square-root covariance filtering algorithm, we have not paid
attention to the way in which the orthogonal matrix @ is to be specified, other than to require
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TABLE 14.3 Summary of Computations in the Square-Root Filtering Algorithm

1. Given parameters:

Transition matrix: A,

Measurement matrix: B,

Covariance matrix of measurement noise: Q, ,,

Covariance matrix of dynamic noise: Q,, ,
2. Old values of parameters to be updated:

Predicted estimate of the state:X,,—,

Square root of the prediction-error covariance matrix: P,‘l(,f, i
3. Orthogonal rotation of the prearray into the postarray:

o BRI R/ |0

: 0, :
0 Pi|/nz—1 G R P1|/2
4. Updated parameters:
G, = [G,R|[R}?]"

oy =Yy, — annln—l
Xun = Xpyn—1 + Gnan

Xy+1n — An+1|n f‘nln

/24T
. P AT,
Pn+l|n = [An-%-llnpil(nz i Q(ln/,zn] __’1|_’l____71___|’_1
T/2
w,n
Notes:
1. Under point 4, all the matrices inside the brackets are extracted from the postarray and known
parameters.

2. In writing the updated parameters, we have made use of the corresponding computational formulas
of Table 14.2.

that the prearray should be transformed into a lower triangular postarray through a process
of annihilations. An elegant way of performing this process is to use Givens rotations, the
application of which proceeds in a step-by-step manner (Golub and Van Loan, 1996).

Under this procedure, the orthogonal matrix © is expressed as a product of N
orthogonal rotation components, as shown by

N
0 = H®k
k=1

where we have ignored reference to discrete time n to simplify the presentation. The
characteristics of each rotation component are as follows:

1. Except for four strategic elements, the diagonal elements of @, are all unity, and the
off-diagonal elements are all zero.

2. The subscript k in @, refers to a pivotal point, around which the four strategic ele-
ments of @, are located. As a rule, the pivotal point is always located on the main
diagonal of the prearray.

3. Two of the strategic elements of @, are cosine parameters, and the remaining two
are sine parameters. To add mathematical significance to these cosine and sine
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parameters, suppose that the requirement is to annihilate the k/-th element of the pre-
array, where k refers to row and / refers to column. Then, the corresponding cosine
(diagonal) parameters 6, and 6, are assigned the same value, but one of the sine (off-
diagonal) parameters is assigned a negative value, as shown by the two-by-two matrix

[ekk 9k1:| _ |:Ck _Sk:| (14.55)
O Oy Sk Ck

All four parameters are real numbers, which is a requirement for satistfying the
constraint

ci +s3 =1 forallk (14.56)

The following example illustrates the steps involved in the transformation of a
prearray into a lower triangular postarray.

EXAMPLE 1. Givens rotations for 3-by-3 prearray

Consider the 3-by-3 prearray X, which is to be transformed into a lower triangular 3-by-3 postar-
ray Y. The transformation will proceed in three steps.

Step 1: For this first step, we write

XX Ml s 0 it

0 ixp xp|lsiioa 0] =|uy wuy up (14.57)
0 i X32 X33 O i O 1 Uz Uz Usz

Prearray of step 1 1st Givens Postarray of step 1

rotation
where the two zeros in the prearray follow from Eq. (14.54), and
Uy = —X;18; T X1p0y
The requirement is to set u;, = 0, for which the following condition must hold:

_ X
ST — C1
X11

Hence, by setting ¢} + s7 =1 and solving for ¢, and s,, we define the first orthogonal rota-
tion used in Eq. (14.57) as

o = X1
L /2 2
X (14.58)
. X12
N 2
Xyt X
Step 2: For this second step, we write
uyp 0 us |l 0 —s vip 0 Vi3
Uy Uy Uy |01 O | =1]va v v (14.59)
uyp  uzm o up fls, 0 %) Vip Vi Va3

Prearray of step 2 2nd Givens Postarray of step 2
rotation



