
8Monitors and Blocking
Synchronization

8.1 Introduction

Monitors are a structured way of combining synchronization and data. A class
encapsulates both data and methods in the same way that a monitor combines
data, methods, and synchronization in a single modular package.
Here is why modular synchronization is important. Let us imagine our appli-

cation has two threads, a producer and a consumer, that communicate through
a shared FIFO queue. We could have the threads share two objects: an unsyn-
chronized queue, and a lock to protect the queue. The producer looks something
like this:

mutex.lock();
try {
queue.enq(x)

} finally {
mutex.unlock();

}

This is no way to run a railroad. Suppose the queue is bounded, meaning that an
attempt to add an item to a full queue cannot proceed until the queue has room.
Here, the decision whether to block the call or to let it proceed depends on the
queue’s internal state, which is (and should be) inaccessible to the caller. Even
worse, suppose the application grows to have multiple producers, consumers, or
both. Each such thread must keep track of both the lock and the queue objects,
and the application will be correct only if each thread follows the same locking
conventions.
A more sensible approach is to allow each queue to manage its own synchro-

nization. The queue itself has its own internal lock, acquired by each method
when it is called and released when it returns. There is no need to ensure that
every thread that uses the queue follows a cumbersome synchronization protocol.
If a thread tries to enqueue an item to a queue that is already full, then the enq()
method itself can detect the problem, suspend the caller, and resume the caller
when the queue has room.

The Art of Multiprocessor Programming. DOI: 10.1016/B978-0-12-397337-5.00008-3

Copyright © 2012 by Elsevier Inc. All rights reserved.
177

178 Chapter 8 Monitors and Blocking Synchronization

8.2 Monitor Locks and Conditions

Just as in Chapters 2 and 7, a Lock is the basic mechanism for ensuring mutual
exclusion. Only one thread at a time can hold a lock. A thread acquires a lock
when it first starts to hold the lock. A thread releases a lock when it stops holding
the lock. A monitor exports a collection of methods, each of which acquires the
lock when it is called, and releases it when it returns.
If a thread cannot immediately acquire a lock, it can either spin, repeatedly

testing whether the desired event has happened, or it can block, giving up the
processor for a while to allow another thread to run.1 Spinning makes sense on
a multiprocessor if we expect to wait for a short time, because blocking a thread
requires an expensive call to the operating system. On the other hand, blocking
makes sense if we expect to wait for a long time, because a spinning thread keeps
a processor busy without doing any work.
For example, a thread waiting for another thread to release a lock should

spin if that particular lock is held briefly, while a consumer thread waiting to
dequeue an item from an empty buffer should block, since there is usually no
way to predict how long it may have to wait. Often, it makes sense to combine
spinning and blocking: a thread waiting to dequeue an itemmight spin for a brief
duration, and then switch to blocking if the delay appears to be long. Blocking
works on both multiprocessors and uniprocessors, while spinning works only on
multiprocessors.

Pragma 8.2.1. Most of the locks in this book follow the interface shown in
Fig. 8.1. Here is an explanation of the Lock interface’s methods:

� The lock() method blocks the caller until it acquires the lock.

� The lockInterruptibly() method acts like lock(), but throws
an exception if the thread is interrupted while it is waiting. (See
Pragma 8.2.2.)

� The unlock() method releases the lock.

� The newCondition() method is a factory that creates and returns a
Condition object associated with the lock (explained below.)

� The tryLock() method acquires the lock if it is free, and immediately
returns a Boolean indicating whether it acquired the lock. This method
can also be called with a timeout.

1 Elsewhere wemake a distinction between blocking and nonblocking synchronization algorithms.
There, we mean something entirely different: a blocking algorithm is one where a delay by one
thread can cause a delay in another.

8.2 Monitor Locks and Conditions 179

1 public interface Lock {
2 void lock();
3 void lockInterruptibly() throws InterruptedException;
4 boolean tryLock();
5 boolean tryLock(long time, TimeUnit unit);
6 Condition newCondition();
7 void unlock();
8 }

Figure 8.1 The Lock Interface.

8.2.1 Conditions

While a thread is waiting for something to happen, say, for another thread to
place an item in a queue, it is a very good idea to release the lock on the queue,
because otherwise the other thread will never be able to enqueue the anticipated
item. After the waiting thread has released the lock, it needs a way to be notified
when to reacquire the lock and try again.
In the Java concurrency package (and in related packages such as Pthreads),

the ability to release a lock temporarily is provided by a Condition object associ-
ated with a lock. Fig. 8.2 shows the use of the Condition interface provided in the
java.util.concurrent.locks library. A condition is associated with a lock, and is cre-
ated by calling that lock’s newCondition()method. If the thread holding that lock
calls the associated condition’s await() method, it releases that lock and suspends
itself, giving another thread the opportunity to acquire the lock.When the calling
thread awakens, it reacquires the lock, perhaps competing with other threads.

Pragma 8.2.2. Threads in Java can be interrupted by other threads. If a thread
is interrupted during a call to a Condition’s await() method, then the
call throws InterruptedException. The proper response to an interrupt
is application-dependent. (It is not good programming practice simply to
ignore interrupts).
Fig. 8.2 shows a schematic example

1 Condition condition = mutex.newCondition();
2 ...
3 mutex.lock()
4 try {
5 while (!property) { // not happy
6 condition.await(); // wait for property
7 } catch (InterruptedException e) {
8 ... // application-dependent response
9 }
10 ... // happy: property must hold
11 }

Figure 8.2 How to use Condition objects.

180 Chapter 8 Monitors and Blocking Synchronization

To avoid clutter, we usually omit InterruptedException handlers from
example code, even though they would be required in actual code.

Like locks, Condition objects must be used in a stylized way. Suppose a thread
wants to wait until a certain property holds. The thread tests the property while
holding the lock. If the property does not hold, then the thread calls await() to
release the lock and sleep until it is awakened by another thread. Here is the key
point: there is no guarantee that the property will hold at the time the thread
awakens. The await() method can return spuriously (i.e., for no reason), or the
thread that signaled the conditionmay have awakened toomany sleeping threads.
Whatever the reason, the thread must retest the property, and if it finds the prop-
erty still does not hold, it must call await() again.
The Condition interface in Fig. 8.3 provides several variations of this call,

some of which provide the ability to specify a maximum time the caller can be
suspended, or whether the thread can be interrupted while it is waiting. When
the queue changes, the thread that made the change can notify other threads
waiting on a condition. Calling signal() wakes up one thread waiting on a con-
dition, while calling signalAll() wakes up all waiting threads. Fig. 8.4 describes
a schematic execution of a monitor lock.
Fig. 8.5 shows how to implement a bounded FIFO queue using explicit locks

and conditions. The lock field is a lock that must be acquired by all meth-
ods. We must initialize it to hold an instance of a class that implements the
Lock interface. Here, we choose ReentrantLock, a useful lock type provided by
the java.util.concurrent.locks package. As discussed in Section 8.4, this lock is
reentrant : a thread that is holding the lock can acquire it again without blocking.
There are two condition objects: notEmpty notifies waiting dequeuers when

the queue goes from being empty to nonempty, and notFull for the opposite
direction. Using two conditions instead of one is more efficient, since fewer
threads are woken up unnecessarily, but it is more complex.

1 public interface Condition {
2 void await() throws InterruptedException;
3 boolean await(long time, TimeUnit unit)
4 throws InterruptedException;
5 boolean awaitUntil(Date deadline)
6 throws InterruptedException;
7 long awaitNanos(long nanosTimeout)
8 throws InterruptedException;
9 void awaitUninterruptibly();
10 void signal(); // wake up one waiting thread
11 void signalAll(); // wake up all waiting threads
12 }

Figure 8.3 The Condition interface: await() and its variants release the lock, give up the
processor, and later awaken and reacquire the lock. The signal() and signalAll() methods
awaken one or more waiting threads.

8.2 Monitor Locks and Conditions 181

waiting
room

critical
section

lock()

(b)

C

C

unlock()
signalAll()

C

A B
A B A BA B

(c)

waiting
room

lock()D

D
critical
section

waiting
room

critical
section

B await(cond)

lock()

(a)

B

Figure 8.4 A schematic representation of a monitor execution. In Part (a) thread A has acquired the monitor
lock, called await() on a condition, released the lock, and is now in the waiting room. Thread B then
goes through the same sequence of steps, entering the critical section, calling await() on the condition,
relinquishing the lock and entering the waiting room. In Part (b) both A and B leave the waiting room after
thread C exits the critical section and calls signalAll(). A and B then attempt to reacquire the monitor lock.
However, thread D manages to acquire the critical section lock first, and so both A and B spin until D leaves
the critical section. Notice that if C would have issued a signal() instead of a signalAll(), only one of A
or B would have left the waiting room, and the other would have continued to wait.

This combination of methods, mutual exclusion locks, and condition objects
is called amonitor.

8.2.2 The Lost-Wakeup Problem

Just as locks are inherently vulnerable to deadlock, Condition objects are inher-
ently vulnerable to lost wakeups, in which one or more threads wait forever with-
out realizing that the condition for which they are waiting has become true.
Lost wakeups can occur in subtle ways. Fig. 8.6 shows an ill-considered opti-

mization of the Queue<T> class. Instead of signaling the notEmpty condition
each time enq() enqueues an item, would it not be more efficient to signal
the condition only when the queue actually transitions from empty to non-
empty? This optimization works as intended if there is only one producer and
one consumer, but it is incorrect if there are multiple producers or consumers.
Consider the following scenario: consumers A and B both try to dequeue an
item from an empty queue, both detect the queue is empty, and both block on
the notEmpty condition. Producer C enqueues an item in the buffer, and signals
notEmpty, waking A. Before A can acquire the lock, however, another producer
D puts a second item in the queue, and because the queue is not empty, it does
not signal notEmpty. Then A acquires the lock, removes the first item, but B,
victim of a lost wakeup, waits forever even though there is an item in the buffer
to be consumed.
Although there is no substitute for reasoning carefully about our program,

there are simple programming practices that will minimize vulnerability to lost
wakeups.

� Always signal all processes waiting on a condition, not just one.

� Specify a timeout when waiting.

182 Chapter 8 Monitors and Blocking Synchronization

1 class LockedQueue<T> {
2 final Lock lock = new ReentrantLock();
3 final Condition notFull = lock.newCondition();
4 final Condition notEmpty = lock.newCondition();
5 final T[] items;
6 int tail, head, count;
7 public LockedQueue(int capacity) {
8 items = (T[])new Object[capacity];
9 }
10 public void enq(T x) {
11 lock.lock();
12 try {
13 while (count == items.length)
14 notFull.await();
15 items[tail] = x;
16 if (++tail == items.length)
17 tail = 0;
18 ++count;
19 notEmpty.signal();
20 } finally {
21 lock.unlock();
22 }
23 }
24 public T deq() {
25 lock.lock();
26 try {
27 while (count == 0)
28 notEmpty.await();
29 T x = items[head];
30 if (++head == items.length)
31 head = 0;
32 --count;
33 notFull.signal();
34 return x;
35 } finally {
36 lock.unlock();
37 }
38 }
39 }

Figure 8.5 The LockedQueue class: a FIFO queue using locks and conditions. There are two
condition fields, one to detect when the queue becomes nonempty, and one to detect when
it becomes nonfull.

Either of these two practices would fix the bounded buffer error we just
described. Each has a small performance penalty, but negligible compared to
the cost of a lost wakeup.
Java provides built-in support for monitors in the form of synchronized

blocks and methods, as well as built-in wait(), notify(), and notifyAll()
methods. (See Appendix A.)

8.3 Readers–Writers Locks 183

1 public void enq(T x) {
2 lock.lock();
3 try {
4 while (count == items.length)
5 notFull.await();
6 items[tail] = x;
7 if (++tail == items.length)
8 tail = 0;
9 ++count;
10 if (count == 1) { // Wrong!
11 notEmpty.signal();
12 }
13 } finally {
14 lock.unlock();
15 }
16 }

Figure 8.6 This example is incorrect. It suffers from lost wakeups. The enq() method signals
notEmpty only if it is the first to place an item in an empty buffer. A lost wakeup occurs if
multiple consumers are waiting, but only the first is awakened to consume an item.

8.3 Readers–Writers Locks

Many shared objects have the property that most method calls, called readers,
return information about the object’s state without modifying the object, while
only a small number of calls, called writers, actually modify the object.
There is no need for readers to synchronize with one another; it is perfectly

safe for them to access the object concurrently. Writers, on the other hand, must
lock out readers as well as other writers. A readers–writers lock allows multiple
readers or a single writer to enter the critical section concurrently. We use the
following interface:

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

This interface exports two lock objects: the read lock and the write lock. They
satisfy the following safety properties:

� No thread can acquire the write lock while any thread holds either the write
lock or the read lock.

� No thread can acquire the read lock while any thread holds the write lock.

Naturally, multiple threads may hold the read lock at the same time.

184 Chapter 8 Monitors and Blocking Synchronization

8.3.1 Simple Readers–Writers Lock

We consider a sequence of increasingly sophisticated reader–writer lock imple-
mentations. The SimpleReadWriteLock class appears in Figs. 8.7– 8.9. This class
uses a counter to keep track of the number of readers that have acquired the lock,

1 public class SimpleReadWriteLock implements ReadWriteLock {
2 int readers;
3 boolean writer;
4 Lock lock;
5 Condition condition;
6 Lock readLock, writeLock;
7 public SimpleReadWriteLock() {
8 writer = false;
9 readers = 0;
10 lock = new ReentrantLock();
11 readLock = new ReadLock();
12 writeLock = new WriteLock();
13 condition = lock.newCondition();
14 }
15 public Lock readLock() {
16 return readLock;
17 }
18 public Lock writeLock() {
19 return writeLock;
20 }

Figure 8.7 The SimpleReadWriteLock class: fields and public methods.

21 class ReadLock implements Lock {
22 public void lock() {
23 lock.lock();
24 try {
25 while (writer) {
26 condition.await();
27 }
28 readers++;
29 } finally {
30 lock.unlock();
31 }
32 }
33 public void unlock() {
34 lock.lock();
35 try {
36 readers--;
37 if (readers == 0)
38 condition.signalAll();
39 } finally {
40 lock.unlock();
41 }
42 }
43 }

Figure 8.8 The SimpleReadWriteLock class: the inner read lock.

8.3 Readers–Writers Locks 185

44 protected class WriteLock implements Lock {
45 public void lock() {
46 lock.lock();
47 try {
48 while (readers > 0 || writer) {
49 condition.await();
50 }
51 writer = true;
52 } finally {
53 lock.unlock();
54 }
55 }
56 public void unlock() {
57 lock.lock();
58 try {
59 writer = false;
60 condition.signalAll();
61 } finally {
62 lock.unlock();
63 }
64 }
65 }
66 }

Figure 8.9 The SimpleReadWriteLock class: inner write lock.

and a Boolean field indicating whether a writer has acquired the lock. To define
the associated read–write locks, this code uses inner classes, a Java feature that
allows one object (the SimpleReadWriteLock lock) to create other objects (the
read–write locks) that share the first object’s private fields. Both the readLock()
and the writeLock() methods return objects that implement the Lock interface.
These objects communicate via the writeLock() object’s fields. Because the read–
write lockmethodsmust synchronize with one another, they both synchronize on
the Lock and condition fields of their common SimpleReadWriteLock object.

8.3.2 Fair Readers–Writers Lock

Even though the SimpleReadWriteLock algorithm is correct, it is still not quite
satisfactory. If readers are muchmore frequent than writers, as is usually the case,
then writers could be locked out for a long time by a continual stream of readers.
The FifoReadWriteLock class, shown in Figs. 8.10–8.12, shows one way to give
writers priority. This class ensures that once a writer calls the write lock’s lock()
method, then nomore readers will be able to acquire the read lock until the writer
has acquired and released the write lock. Eventually, the readers holding the read
lock will drain out without letting anymore readers in, and the writer will acquire
the write lock.
The readAcquires field counts the total number of read lock acquisitions,

and the readReleases field counts the total number of read lock releases. When
these quantities match, no thread is holding the read lock. (We are, of course,
ignoring potential integer overflow and wraparound problems.) The class has

186 Chapter 8 Monitors and Blocking Synchronization

1 public class FifoReadWriteLock implements ReadWriteLock {
2 int readAcquires, readReleases;
3 boolean writer;
4 Lock lock;
5 Condition condition;
6 Lock readLock, writeLock;
7 public FifoReadWriteLock() {
8 readAcquires = readReleases = 0;
9 writer = false;
10 lock = new ReentrantLock(true);
11 condition = lock.newCondition();
12 readLock = new ReadLock();
13 writeLock = new WriteLock();
14 }
15 public Lock readLock() {
16 return readLock;
17 }
18 public Lock writeLock() {
19 return writeLock;
20 }
21 ...
22 }

Figure 8.10 The FifoReadWriteLock class: fields and public methods.

23 private class ReadLock implements Lock {
24 public void lock() {
25 lock.lock();
26 try {
27 while (writer) {
28 condition.await();
29 }
30 readAcquires++;
31 } finally {
32 lock.unlock();
33 }
34 }
35 public void unlock() {
36 lock.lock();
37 try {
38 readReleases++;
39 if (readAcquires == readReleases)
40 condition.signalAll();
41 } finally {
42 lock.unlock();
43 }
44 }
45 }

Figure 8.11 The FifoReadWriteLock class: inner read lock class.

8.4 Our Own Reentrant Lock 187

46 private class WriteLock implements Lock {
47 public void lock() {
48 lock.lock();
49 try {
50 while (writer) {
51 condition.await();
52 }
53 writer = true;
54 while (readAcquires != readReleases) {
55 condition.await();
56 }
57 } finally {
58 lock.unlock();
59 }
60 }
61 public void unlock() {
62 writer = false;
63 condition.signalAll();
64 }
65 }

Figure 8.12 The FifoReadWriteLock class: inner write lock class.

a private lock field, held by readers for short durations: they acquire the lock,
increment the readAcquires field, and release the lock. Writers hold this lock
from the time they try to acquire the write lock to the time they release it. This
locking protocol ensures that once a writer has acquired the lock, no additional
reader can increment readAcquires, so no additional reader can acquire the
read lock, and eventually all readers currently holding the read lock will release
it, allowing the writer to proceed.
How are waiting writers notified when the last reader releases its lock? When a

writer tries to acquire the write lock, it acquires the FifoReadWriteLock object’s
lock. A reader releasing the read lock also acquires that lock, and calls the
associated condition’s signal() method if all readers have released their locks.

8.4 Our Own Reentrant Lock

Using the locks described in Chapters 2 and 7, a thread that attempts to reac-
quire a lock it already holds will deadlock with itself. This situation can arise if a
method that acquires a lock makes a nested call to another method that acquires
the same lock.
A lock is reentrant if it can be acquired multiple times by the same thread.

We now examine how to create a reentrant lock from a non-reentrant lock. This
exercise is intended to illustrate how to use locks and conditions. In practice, the
java.util.concurrent.locks package provides reentrant lock classes, so there is no
need to write our own.
Fig. 8.13 shows the SimpleReentrantLock class. The owner field holds the ID

of the last thread to acquire the lock, and the holdCount field is incremented each

188 Chapter 8 Monitors and Blocking Synchronization

1 public class SimpleReentrantLock implements Lock{
2 Lock lock;
3 Condition condition;
4 int owner, holdCount;
5 public SimpleReentrantLock() {
6 lock = new SimpleLock();
7 condition = lock.newCondition();
8 owner = 0;
9 holdCount = 0;
10 }
11 public void lock() {
12 int me = ThreadID.get();
13 lock.lock();
14 try {
15 if (owner == me) {
16 holdCount++;
17 return;
18 }
19 while (holdCount != 0) {
20 condition.await();
21 }
22 owner = me;
23 holdCount = 1;
24 } finally {
25 lock.unlock();
26 }
27 }
28 public void unlock() {
29 lock.lock();
30 try {
31 if (holdCount == 0 || owner != ThreadID.get())
32 throw new IllegalMonitorStateException();
33 holdCount--;
34 if (holdCount == 0) {
35 condition.signal();
36 }
37 } finally {
38 lock.unlock();
39 }
40 }
41
42 public Condition newCondition() {
43 throw new UnsupportedOperationException("Not supported yet.");
44 }
45 ...
46 }

Figure 8.13 The SimpleReentrantLock class: lock() and unlock() methods.

time the lock is acquired, and decremented each time it is released. The lock is
free when the holdCount value is zero. Because these two fields are manipulated
atomically, we need an internal, short-term lock. The lock field is a lock used by
lock() and unlock() to manipulate the fields, and the condition field is used by

8.6 Chapter Notes 189

threads waiting for the lock to become free. In Fig. 8.13, we initialize the internal
lock field to an object of a (fictitious) SimpleLock class which is presumably not
reentrant (Line 6).
The lock() method acquires the internal lock (Line 13). If the current thread is

already the owner, it increments the hold count and returns (Line 15). Otherwise,
if the hold count is not zero, the lock is held by another thread, and the caller
releases the lock and waits until the condition is signaled (Line 20). When the
caller awakens, it must still check that the hold count is zero. When the hold
count is established to be zero, the calling thread makes itself the owner and sets
the hold count to 1.
The unlock() method acquires the internal lock (Line 29). It throws an excep-

tion if either the lock is free, or the caller is not the owner (Line 31). Otherwise, it
decrements the hold count. If the hold count is zero, then the lock is free, so the
caller signals the condition to wake up a waiting thread (Line 35).

8.5 Semaphores

As we have seen, a mutual exclusion lock guarantees that only one thread at a
time can enter a critical section. If another thread wants to enter the critical
section while it is occupied, then it blocks, suspending itself until another thread
notifies it to try again. A Semaphore is a generalization of mutual exclusion locks.
Each Semaphore has a capacity, denoted by c for brevity. Instead of allowing
only one thread at a time into the critical section, a Semaphore allows at most c
threads, where the capacity c is determined when the Semaphore is initialized.
As discussed in the chapter notes, semaphores were one of the earliest forms of
synchronization.
The Semaphore class of Fig. 8.14 provides two methods: a thread calls

acquire() to request permission to enter the critical section, and release()
to announce that it is leaving the critical section. The Semaphore itself is just a
counter: it keeps track of the number of threads that have been granted permis-
sion to enter. If a new acquire() call is about to exceed the capacity c, the calling
thread is suspended until there is room. When a thread leaves the critical section,
it calls release() to notify a waiting thread that there is now room.

8.6 Chapter Notes

Monitors were invented by Per Brinch-Hansen [52] and Tony Hoare [71].
Semaphores were invented by Edsger Dijkstra [33]. McKenney [112] surveys dif-
ferent kinds of locking protocols.

190 Chapter 8 Monitors and Blocking Synchronization

1 public class Semaphore {
2 final int capacity;
3 int state;
4 Lock lock;
5 Condition condition;
6 public Semaphore(int c) {
7 capacity = c;
8 state = 0;
9 lock = new ReentrantLock();
10 condition = lock.newCondition();
11 }
12 public void acquire() {
13 lock.lock();
14 try {
15 while (state == capacity) {
16 condition.await();
17 }
18 state++;
19 } finally {
20 lock.unlock();
21 }
22 }
23 public void release() {
24 lock.lock();
25 try {
26 state--;
27 condition.signalAll();
28 } finally {
29 lock.unlock();
30 }
31 }
32 }

Figure 8.14 Semaphore implementation.

8.7 Exercises

Exercise 93. Reimplement the SimpleReadWriteLock class using Java
synchronized, wait(), notify(), and notifyAll() constructs in place of
explict locks and conditions.
Hint: you must figure out how methods of the inner read–write lock classes

can lock the outer SimpleReadWriteLock object.

Exercise 94. The ReentrantReadWriteLock class provided by the
java.util.concurrent.locks package does not allow a thread holding the lock in
read mode to then access that lock in write mode (the thread will block). Jus-
tify this design decision by sketching what it would take to permit such lock
upgrades.

8.7 Exercises 191

Exercise 95. A savings account object holds a nonnegative balance, and provides
deposit(k) and withdraw(k) methods, where deposit(k) adds k to the bal-
ance, and withdraw(k) subtracts k, if the balance is at least k, and otherwise
blocks until the balance becomes k or greater.

1. Implement this savings account using locks and conditions.
2. Now suppose there are two kinds of withdrawals: ordinary and preferred.
Devise an implementation that ensures that no ordinary withdrawal occurs
if there is a preferred withdrawal waiting to occur.

3. Now let us add a transfer() method that transfers a sum from one account
to another:

void transfer(int k, Account reserve) {
lock.lock();
try {
reserve.withdraw(k);
deposit(k);

} finally {lock.unlock();}
}

We are given a set of 10 accounts, whose balances are unknown. At 1:00, each
of n threads tries to transfer $100 from another account into its own account.
At 2:00, a Boss thread deposits $1000 to each account. Is every transfermethod
called at 1:00 certain to return?

Exercise 96. In the shared bathroom problem, there are two classes of threads,
called male and female. There is a single bathroom resource that must be used
in the following way:

1. Mutual exclusion: persons of opposite sex may not occupy the bathroom
simultaneously,

2. Starvation-freedom: everyone who needs to use the bathroom eventually
enters.

The protocol is implemented via the following four procedures: enterMale()
delays the caller until it is ok for a male to enter the bathroom, leaveMale() is
called when a male leaves the bathroom, while enterFemale() and
leaveFemale() do the same for females. For example,

enterMale();
teeth.brush(toothpaste);
leaveMale();

1. Implement this class using locks and condition variables.
2. Implement this class using synchronized, wait(), notify(), and

notifyAll().

For each implementation, explain why it satisfiesmutual exclusion and starvation-
freedom.

192 Chapter 8 Monitors and Blocking Synchronization

Exercise 97. The Rooms class manages a collection of rooms, indexed from 0 to
m (where m is an argument to the constructor). Threads can enter or exit any
room in that range. Each room can hold an arbitrary number of threads simul-
taneously, but only one room can be occupied at a time. For example, if there are
two rooms, indexed 0 and 1, then any number of threads might enter the room
0, but no thread can enter the room 1 while room 0 is occupied. Fig. 8.15 shows
an outline of the Rooms class.
Each room can be assigned an exit handler: calling setHandler(i,h) sets the

exit handler for room i to handler h. The exit handler is called by the last thread to

1 public class Rooms {
2 public interface Handler {
3 void onEmpty();
4 }
5 public Rooms(int m) { ... };
6 void enter(int i) { ... };
7 boolean exit() { ... };
8 public void setExitHandler(int i, Rooms.Handler h) { ... };
9 }

Figure 8.15 The Rooms class.

1 class Driver {
2 void main() {
3 CountDownLatch startSignal = new CountDownLatch(1);
4 CountDownLatch doneSignal = new CountDownLatch(n);
5 for (int i = 0; i < n; ++i) // start threads
6 new Thread(new Worker(startSignal, doneSignal)).start();
7 doSomethingElse(); // get ready for threads
8 startSignal.countDown(); // unleash threads
9 doSomethingElse(); // biding my time ...
10 doneSignal.await(); // wait for threads to finish
11 }
12 class Worker implements Runnable {
13 private final CountDownLatch startSignal, doneSignal;
14 Worker(CountDownLatch myStartSignal, CountDownLatch myDoneSignal) {
15 startSignal = myStartSignal;
16 doneSignal = myDoneSignal;
17 }
18 public void run() {
19 startSignal.await(); // wait for driver’s OK to start
20 doWork();
21 doneSignal.countDown(); // notify driver we’re done
22 }
23 ...
24 }
25 }

Figure 8.16 The CountDownLatch class: an example usage.

8.7 Exercises 193

leave a room, but before any threads subsequently enter any room. This method
is called once and while it is running, no threads are in any rooms.
Implement the Rooms class. Make sure that:

� If some thread is in room i, then no thread is in room j �= i.

� The last thread to leave a room calls the room’s exit handler, and no threads
are in any room while that handler is running.

� Your implementation must be fair: any thread that tries to enter a room even-
tually succeeds. Naturally, you may assume that every thread that enters a
room eventually leaves.

Exercise 98. Consider an application with distinct sets of active and passive
threads, where we want to block the passive threads until all active threads give
permission for the passive threads to proceed.
A CountDownLatch encapsulates a counter, initialized to be n, the number of

active threads. When an active method is ready for the passive threads to run,
it calls countDown(), which decrements the counter. Each passive thread calls
await(), which blocks the thread until the counter reaches zero. (See Fig. 8.16.)
Provide a CountDownLatch implementation. Do not worry about reusing the

CountDownLatch object.

Exercise 99. This exercise is a follow-up toExercise 98. Provide aCountDownLatch
implementation where the CountDownLatch object can be reused.

This page intentionally left blank

9Linked Lists: The Role
of Locking

9.1 Introduction

In Chapter 7 we saw how to build scalable spin locks that provide mutual
exclusion efficiently, even when they are heavily used. We might think that it
is now a simple matter to construct scalable concurrent data structures: take
a sequential implementation of the class, add a scalable lock field, and ensure
that each method call acquires and releases that lock. We call this approach
coarse-grained synchronization.
Often, coarse-grained synchronization works well, but there are important

cases where it does not. The problem is that a class that uses a single lock to
mediate all its method calls is not always scalable, even if the lock itself is scalable.
Coarse-grained synchronization works well when levels of concurrency are low,
but if too many threads try to access the object at the same time, then the object
becomes a sequential bottleneck, forcing threads to wait in line for access.
Thischapter introduces severaluseful techniques thatgobeyondcoarse-grained

locking to allow multiple threads to access a single object at the same time.

� Fine-grained synchronization: Instead of using a single lock to synchronize
every access to an object, we split the object into independently synchronized
components, ensuring that method calls interfere only when trying to access
the same component at the same time.

� Optimistic synchronization:Many objects, such as trees or lists, consist of mul-
tiple components linked together by references. Some methods search for a
particular component (e.g., a list or tree node containing a particular key).
One way to reduce the cost of fine-grained locking is to search without acquir-
ing any locks at all. If the method finds the sought-after component, it locks
that component, and then checks that the component has not changed in the
interval between when it was inspected and when it was locked. This technique
is worthwhile only if it succeeds more often than not, which is why we call it
optimistic.

The Art of Multiprocessor Programming. DOI: 10.1016/B978-0-12-397337-5.00009-5

Copyright © 2012 by Elsevier Inc. All rights reserved.
195

196 Chapter 9 Linked Lists: The Role of Locking

1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

Figure 9.1 The Set interface: add() adds an item to the set (no effect if that item is already
present), remove() removes it (if present), and contains() returns a Boolean indicating
whether the item is present.

� Lazy synchronization: Sometimes it makes sense to postpone hard work. For
example, the task of removing a component from a data structure can be split
into two phases: the component is logically removed simply by setting a tag bit,
and later, the component can be physically removed by unlinking it from the
rest of the data structure.

� Nonblocking synchronization: Sometimes we can eliminate locks entirely,
relying on built-in atomic operations such as compareAndSet() for synchro-
nization.

Each of these techniques can be applied (with appropriate customization) to a
variety of common data structures. In this chapter we consider how to use linked
lists to implement a set, a collection of items that contains no duplicate elements.
For our purposes, as illustrated in Fig. 9.1, a set provides the following three

methods:

� The add(x) method adds x to the set, returning true if, and only if x was not
already there.

� The remove(x) method removes x from the set, returning true if, and only if
x was there.

� The contains(x) returns true if, and only if the set contains x.

For each method, we say that a call is successful if it returns true, and unsuccessful
otherwise. It is typical that in applications using sets, there are significantly more
contains() calls than add() or remove() calls.

9.2 List-Based Sets

This chapter presents a range of concurrent set algorithms, all based on the same
basic idea. A set is implemented as a linked list of nodes. As shown in Fig. 9.2,
the Node<T> class has three fields.1 The item field is the actual item of interest.
The key field is the item’s hash code. Nodes are sorted in key order, providing
an efficient way to detect when an item is absent. The next field is a reference to

1 To be consistent with the Java memory model these fields and their modifications later in the
text will need to be volatile, though we ignore this issue here for the sake of brevity.

9.2 List-Based Sets 197

1 private class Node {
2 T item;
3 int key;
4 Node next;
5 }

Figure 9.2 The Node<T> class: this internal class keeps track of the item, the item’s key, and
the next node in the list. Some algorithms require technical changes to this class.

remove b

b

head

pred

tail

c

curr

a

b

head

pred

tail

c

curr

a

add b

(a)

(b)

Figure 9.3 A seqential Set implementation: adding and removing nodes. In Part (a), a thread
adding a node b uses two variables: curr is the current node, and pred is its predecessor.
The thread moves down the list comparing the keys for curr and b. If a match is found, the
item is already present, so it returns false. If curr reaches a node with a higher key, the item
is not in the set so Set b’s next field to curr , and pred ’s next field to b. In Part (b), to delete
curr , the thread sets pred ’s next field to curr ’s next field.

the next node in the list. (Some of the algorithms we consider require technical
changes to this class, such as adding new fields, or changing the types of existing
fields.) For simplicity, we assume that each item’s hash code is unique (relaxing
this assumption is left as an exercise). We associate an item with the same node
and key throughout any given example, which allows us to abuse notation and
use the same symbol to refer to a node, its key, and its item. That is, node a may
have key a and item a, and so on.
The list has two kinds of nodes. In addition to regular nodes that hold items

in the set, we use two sentinel nodes, called head and tail, as the first and last
list elements. Sentinel nodes are never added, removed, or searched for, and their

198 Chapter 9 Linked Lists: The Role of Locking

keys are the minimum and maximum integer values.2 Ignoring synchronization
for the moment, the top part of Fig. 9.3 schematically describes how an item is
added to the set. Each thread A has two local variables used to traverse the list:
currA is the current node and predA is its predecessor. To add an item to the set,
thread A sets local variables predA and currA to head, and moves down the list,
comparing currA’s key to the key of the item being added. If they match, the item
is already present in the set, so the call returns false. If predA precedes currA in
the list, then predA’s key is lower than that of the inserted item, and currA’s key
is higher, so the item is not present in the list. The method creates a new node b
to hold the item, sets b’s nextA field to currA, then sets predA to b. Removing
an item from the set works in a similar way.

9.3 Concurrent Reasoning

Reasoning about concurrent data structures may seem impossibly difficult, but it
is a skill that can be learned. Often, the key to understanding a concurrent data
structure is to understand its invariants: properties that always hold.We can show
that a property is invariant by showing that:

1. The property holds when the object is created, and
2. Once the property holds, then no thread can take a step that makes the
property false.

Most interesting invariants hold trivially when the list is created, so it makes sense
to focus on how invariants, once established, are preserved.
Specifically, we can check that each invariant is preserved by each invocation

of insert(), remove(), and contains() methods. This approach works only if
we can assume that these methods are the only ones that modify nodes, a prop-
erty sometimes called freedom from interference. In the list algorithms considered
here, nodes are internal to the list implementation, so freedom from interference
is guaranteed because users of the list have no opportunity to modify its internal
nodes.
We require freedom from interference even for nodes that have been removed

from the list, since some of our algorithms permit a thread to unlink a node
while it is being traversed by others. Fortunately, we do not attempt to reuse list
nodes that have been removed from the list, relying instead on a garbage collector
to recycle that memory. The algorithms described here work in languages with-
out garbage collection, but sometimes require nontrivial modifications that are
beyond the scope of this chapter.

2 All algorithms presented here work for any ordered set of keys that have maximum and mini-
mum values and that are well-founded, that is, there are only finitely many keys smaller than any
given key. For simplicity, we assume here that keys are integers.

9.3 Concurrent Reasoning 199

When reasoning about concurrent object implementations, it is important to
understand the distinction between an object’s abstract value (here, a set of items),
and its concrete representation (here, a list of nodes).
Not every list of nodes is a meaningful representation for a set. An algorithm’s

representation invariant characterizes which representations make sense as
abstract values. If a and b are nodes, we say that a points to b if a’s next field is a
reference to b. We say that b is reachable if there is a sequence of nodes, starting
at head, and ending at b, where each node in the sequence points to its successor.
The set algorithms in this chapter require the following invariants (some

require more, as explained later). First, sentinels are neither added nor removed.
Second, nodes are sorted by key, and keys are unique.
Let us think of the representation invariant as a contract among the object’s

methods. Each method call preserves the invariant, and also relies on the other
methods to preserve the invariant. In this way, we can reason about each method
in isolation, without having to consider all the possible ways they might interact.
Given a list satisfying the representation invariant, which set does it represent?

The meaning of such a list is given by an abstraction map carrying lists that satisfy
the representation invariant to sets. Here, the abstraction map is simple: an item
is in the set if and only if it is reachable from head.
What safety and liveness properties do we need? Our safety property is

linearizability. As we saw in Chapter 3, to show that a concurrent data structure
is a linearizable implementation of a sequentially specified object, it is enough to
identify a linearization point, a single atomic step where the method call “takes
effect.” This step can be a read, a write, or a more complex atomic operation.
Looking at any execution history of a list-based set, it must be the case that if the
abstraction map is applied to the representation at the linearization points, the
resulting sequence of states and method calls defines a valid sequential set exe-
cution. Here, add(a) adds a to the abstract set, remove(a) removes a from the
abstract set, and contains(a) returns true or false, depending on whether a was
already in the set.
Different list algorithms make different progress guarantees. Some use locks,

and care is required to ensure they are deadlock- and starvation-free. Some
nonblocking list algorithms do not use locks at all, while others restrict locking
to certain methods. Here is a brief summary, from Chapter 3, of the nonblocking
properties we use3:

� Amethod is wait-free if it guarantees that every call finishes in a finite number
of steps.

� A method is lock-free if it guarantees that some call always finishes in a finite
number of steps.

We are now ready to consider a range of list-based set algorithms. We start with
algorithms that use coarse-grained synchronization, and successively refine them

3 Chapter 3 introduces an even weaker nonblocking property called obstruction-freedom.

200 Chapter 9 Linked Lists: The Role of Locking

to reduce granularity of locking. Formal proofs of correctness lie beyond the
scope of this book. Instead, we focus on informal reasoning useful in everyday
problem-solving.
Asmentioned, in each of these algorithms,methods scan through the list using

two local variables: curr is the current node and pred is its predecessor. These
variables are thread-local,4 so we use predA and currA to denote the instances
used by thread A.

9.4 Coarse-Grained Synchronization

We start with a simple algorithm using coarse-grained synchronization. Figs. 9.4
and 9.5 show the add() and remove() methods for this coarse-grained algorithm.
(The contains() method works in much the same way, and is left as an exercise.)
The list itself has a single lockwhich everymethod callmust acquire. The principal

1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4 public CoarseList() {
5 head = new Node(Integer.MIN_VALUE);
6 head.next = new Node(Integer.MAX_VALUE);
7 }
8 public boolean add(T item) {
9 Node pred, curr;
10 int key = item.hashCode();
11 lock.lock();
12 try {
13 pred = head;
14 curr = pred.next;
15 while (curr.key < key) {
16 pred = curr;
17 curr = curr.next;
18 }
19 if (key == curr.key) {
20 return false;
21 } else {
22 Node node = new Node(item);
23 node.next = curr;
24 pred.next = node;
25 return true;
26 }
27 } finally {
28 lock.unlock();
29 }
30 }

Figure 9.4 The CoarseList class: the add() method.

4 Appendix A describes how thread-local variables work in Java.

9.5 Fine-Grained Synchronization 201

31 public boolean remove(T item) {
32 Node pred, curr;
33 int key = item.hashCode();
34 lock.lock();
35 try {
36 pred = head;
37 curr = pred.next;
38 while (curr.key < key) {
39 pred = curr;
40 curr = curr.next;
41 }
42 if (key == curr.key) {
43 pred.next = curr.next;
44 return true;
45 } else {
46 return false;
47 }
48 } finally {
49 lock.unlock();
50 }
51 }

Figure 9.5 The CoarseList class: the remove() method. All methods acquire a single lock,
which is released on exit by the finally block.

advantage of this algorithm,which should not be discounted, is that it is obviously
correct. All methods act on the list only while holding the lock, so the execution
is essentially sequential. To simplify matters, we follow the convention (for now)
that the linearization point for any method call that acquires a lock is the instant
the lock is acquired.
The CoarseList class satisfies the same progress condition as its lock: if the

Lock is starvation-free, so is our implementation. If contention is very low, this
algorithm is an excellent way to implement a list. If, however, there is contention,
then even if the lock itself performs well, threads will still be delayed waiting for
one another.

9.5 Fine-Grained Synchronization

We can improve concurrency by locking individual nodes, rather than locking
the list as a whole. Instead of placing a lock on the entire list, let us add a Lock
to each node, along with lock() and unlock() methods. As a thread traverses
the list, it locks each node when it first visits, and sometime later releases it. Such
fine-grained locking permits concurrent threads to traverse the list together in a
pipelined fashion.
Let us consider two nodes a and b where a points to b. It is not safe to unlock

a before locking b because another thread could remove b from the list in the
interval between unlocking a and locking b. Instead, threadAmust acquire locks
in a kind of “hand-over-hand” order: except for the initial head sentinel node,

202 Chapter 9 Linked Lists: The Role of Locking

acquire the lock for a node only while holding the lock for its predecessor. This
locking protocol is sometimes called lock coupling. (Notice that there is no obvi-
ous way to implement lock coupling using Java’s synchronizedmethods.)
Fig. 9.6 shows the FineList algorithm’s add() method, and Fig. 9.7 its

remove() method. Just as in the coarse-grained list, remove() makes currA
unreachable by setting predA’s next field to currA’s successor. To be safe,
remove() must lock both predA and currA. To see why, let us consider the
following scenario, illustrated in Fig. 9.8. Thread A is about to remove node a,
the first node in the list, while thread B is about to remove node b, where a
points to b. Suppose A locks head, and B locks a. A then sets head.next to b,
while B sets a.next to c. The net effect is to remove a, but not b. The problem is
that there is no overlap between the locks held by the two remove() calls. Fig. 9.9
illustrates how this “hand-over-hand” locking avoids this problem.
To guarantee progress, it is important that all methods acquire locks in the

same order, starting at the head and following next references toward the tail.
As Fig. 9.10 shows, a deadlock could occur if different method calls were to
acquire locks in different orders. In this example, thread A, trying to add a, has

1 public boolean add(T item) {
2 int key = item.hashCode();
3 head.lock();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }
15 if (curr.key == key) {
16 return false;
17 }
18 Node newNode = new Node(item);
19 newNode.next = curr;
20 pred.next = newNode;
21 return true;
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }

Figure 9.6 The FineList class: the add() method uses hand-over-hand locking to traverse
the list. The finally blocks release locks before returning.

9.5 Fine-Grained Synchronization 203

29 public boolean remove(T item) {
30 Node pred = null, curr = null;
31 int key = item.hashCode();
32 head.lock();
33 try {
34 pred = head;
35 curr = pred.next;
36 curr.lock();
37 try {
38 while (curr.key < key) {
39 pred.unlock();
40 pred = curr;
41 curr = curr.next;
42 curr.lock();
43 }
44 if (curr.key == key) {
45 pred.next = curr.next;
46 return true;
47 }
48 return false;
49 } finally {
50 curr.unlock();
51 }
52 } finally {
53 pred.unlock();
54 }
55 }

Figure 9.7 The FineList class: the remove() method locks both the node to be removed
and its predecessor before removing that node.

b

head tail

c

remove bremove a

a

Figure 9.8 The FineList class: why remove() must acquire two locks. Thread A is about to
remove a, the first node in the list, while thread B is about to remove b, where a points
to b. Suppose A locks head, and B locks a. Thread A then sets head.next to b, while B sets
a’s next field to c. The net effect is to remove a, but not b.

locked b and is attempting to lock head, while B, trying to remove b, has locked
head and is trying to lock b. Clearly, thesemethod calls will never finish. Avoiding
deadlocks is one of the principal challenges of programming with locks.
The FineList algorithm maintains the representation invariant: sentinels are

never added or removed, and nodes are sorted by key value without duplicates.

204 Chapter 9 Linked Lists: The Role of Locking

b

head tail

ca

remove bremove a

Figure 9.9 The FineList class: Hand-over-hand locking ensures that if concurrent remove()
calls try to remove adjacent nodes, then they acquire conflicting locks. Thread A is about to
remove node a, the first node in the list, while thread B is about to remove node b, where
a points to b. Because A must lock both head and a, and B must lock both a and b, they are
guaranteed to conflict on a, forcing one call to wait for the other.

b

head tail

c

a

B: remove b A: add a

Figure 9.10 The FineList class: a deadlock can occur if, for example, remove() and add()
calls acquire locks in opposite order. Thread A is about to insert a by locking first b and then
head, and thread B is about to remove node b by locking first head and then b. Each thread
holds the lock the other is waiting to acquire, so neither makes progress.

The abstraction map is the same as for the course-grained list: an item is in the
set if, and only if its node is reachable.
The linearization point for an add(a) call depends on whether the call was

successful (i.e., whether a was already present). A successful call (a absent) is
linearized when the node with the next higher key is locked (either Line 7 or 13).
The same distinctions apply to remove(a) calls. An unsuccessful call (a

present) is linearized when the predecessor node is locked (Lines 36 or 42).
An unsuccessful call (a absent) is linearized when the node containing the next
higher key is locked (Lines 36 or 42).
Determining linearization points for contains() is left as an exercise.
The FineList algorithm is starvation-free, but arguing this property is

harder than in the coarse-grained case. We assume that all individual locks are
starvation-free. Because all methods acquire locks in the same down-the-list

9.6 Optimistic Synchronization 205

order, deadlock is impossible. If thread A attempts to lock head, eventually it
succeeds. From that point on, because there are no deadlocks, eventually all locks
held by threads ahead of A in the list will be released, and A will succeed in
locking predA and currA.

9.6 Optimistic Synchronization

Although fine-grained locking is an improvement over a single, coarse-grained
lock, it still imposes a potentially long sequence of lock acquisitions and releases.
Moreover, threads accessing disjoint parts of the list may still block one another.
For example, a thread removing the second item in the list blocks all concurrent
threads searching for later nodes.
One way to reduce synchronization costs is to take a chance: search without

acquiring locks, lock the nodes found, and then confirm that the locked nodes
are correct. If a synchronization conflict causes the wrong nodes to be locked,
then release the locks and start over. Normally, this kind of conflict is rare, which
is why we call this technique optimistic synchronization.
In Fig. 9.11, thread A makes an optimistic add(a). It traverses the list with-

out acquiring any locks (Lines 6 through 8). In fact, it ignores the locks com-
pletely. It stops the traversal when currA’s key is greater than, or equal to a’s.
It then locks predA and currA, and calls validate() to check that predA is
reachable and its next field still refers to currA. If validation succeeds, then
thread A proceeds as before: if currA’s key is greater than a, thread A adds a
new node with item a between predA and currA, and returns true. Otherwise it
returns false. The remove() and contains() methods (Figs. 9.12 and 9.13) oper-
ate similarly, traversing the list without locking, then locking the target nodes
and validating they are still in the list. To be consistent with the Java memory
model, the next fields in the nodes need to be declared volatile.
The code of validate() appears in Fig. 9.14.We are reminded of the following

story:

A tourist takes a taxi in a foreign town. The taxi driver speeds through a red
light. The tourist, frightened, asks “What are you are doing?” The driver answers:
“Do not worry, I am an expert.” He speeds through more red lights, and the
tourist, on the verge of hysteria, complains again, more urgently. The driver
replies, “Relax, relax, you are in the hands of an expert.” Suddenly, the light turns
green, the driver slams on the brakes, and the taxi skids to a halt. The tourist picks
himself off the floor of the taxi and asks “For crying out loud, why stop now that
the light is finally green?” The driver answers “Too dangerous, could be another
expert crossing.”

Traversing any dynamically changing lock-based data structure while ignor-
ing locks requires careful thought (there are other expert threads out there). We
must make sure to use some form of validation and guarantee freedom from
interference.

206 Chapter 9 Linked Lists: The Role of Locking

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock(); curr.lock();
10 try {
11 if (validate(pred, curr)) {
12 if (curr.key == key) {
13 return false;
14 } else {
15 Node node = new Node(item);
16 node.next = curr;
17 pred.next = node;
18 return true;
19 }
20 }
21 } finally {
22 pred.unlock(); curr.unlock();
23 }
24 }
25 }

Figure 9.11 The OptimisticList class: the add() method traverses the list ignoring locks,
acquires locks, and validates before adding the new node.

26 public boolean remove(T item) {
27 int key = item.hashCode();
28 while (true) {
29 Node pred = head;
30 Node curr = pred.next;
31 while (curr.key < key) {
32 pred = curr; curr = curr.next;
33 }
34 pred.lock(); curr.lock();
35 try {
36 if (validate(pred, curr)) {
37 if (curr.key == key) {
38 pred.next = curr.next;
39 return true;
40 } else {
41 return false;
42 }
43 }
44 } finally {
45 pred.unlock(); curr.unlock();
46 }
47 }
48 }

Figure 9.12 The OptimisticList class: the remove() method traverses ignoring locks,
acquires locks, and validates before removing the node.

9.6 Optimistic Synchronization 207

49 public boolean contains(T item) {
50 int key = item.hashCode();
51 while (true) {
52 Node pred = this.head; // sentinel node;
53 Node curr = pred.next;
54 while (curr.key < key) {
55 pred = curr; curr = curr.next;
56 }
57 pred.lock(); curr.lock();
58 try {
59 if (validate(pred, curr)) {
60 return (curr.key == key);
61 }
62 } finally { // always unlock
63 pred.unlock(); curr.unlock();
64 }
65 }
66 }

Figure 9.13 The OptimisticList class: the contains() method searches, ignoring locks,
then it acquires locks, and validates to determine if the node is in the list.

67 private boolean validate(Node pred, Node curr) {
68 Node node = head;
69 while (node.key <= pred.key) {
70 if (node == pred)
71 return pred.next == curr;
72 node = node.next;
73 }
74 return false;
75 }

Figure 9.14 The OptimisticList: validation checks that predA points to currA and is
reachable from head.

As Fig. 9.15 shows, validation is necessary because the trail of references lead-
ing to predA or the reference from predA to currA could have changed between
when they were last read by A and when A acquired the locks. In particular,
a thread could be traversing parts of the list that have already been removed.
For example, the node currA and all nodes between currA and a (including a)
may be removed while A is still traversing currA. Thread A discovers that currA
points to a, and, without validation, “successfully” removes a, even though a is
no longer in the list. A validate() call detects that a is no longer in the list,
and the caller restarts the method.
Because we are ignoring the locks that protect concurrent modifications, each

of the method calls may traverse nodes that have been removed from the list.
Nevertheless, absence of interference implies that once a node has been unlinked
from the list, the value of its next field does not change, so following a sequence
of such links eventually leads back to the list. Absence of interference, in turn,
relies on garbage collection to ensure that no node is recycled while it is being
traversed.

208 Chapter 9 Linked Lists: The Role of Locking

a

currA

head

predA

tail

. . .

Figure 9.15 The OptimisticList class: why validation is needed. Thread A is attempting
to remove a node a. While traversing the list, currA and all nodes between currA and a
(including a) might be removed (denoted by a lighter node color). In such a case, thread A
would proceed to the point where currA points to a, and, without validation, would success-
fully remove a, even though it is no longer in the list. Validation is required to determine that
a is no longer reachable from head.

The OptimisticList algorithm is not starvation-free, even if all node locks
are individually starvation-free. A thread might be delayed forever if new nodes
are repeatedly added and removed (see Exercise 107). Nevertheless, we would
expect this algorithm to do well in practice, since starvation is rare.

9.7 Lazy Synchronization

The OptimisticList implementation works best if the cost of traversing the
list twice without locking is significantly less than the cost of traversing the list
once with locking. One drawback of this particular algorithm is that contains()
acquires locks, which is unattractive since contains() calls are likely to be much
more common than calls to other methods.
The next step is to refine this algorithm so that contains() calls are wait-

free, and add() and remove() methods, while still blocking, traverse the list only
once (in the absence of contention). We add to each node a Boolean marked field
indicating whether that node is in the set. Now, traversals do not need to lock
the target node, and there is no need to validate that the node is reachable by
retraversing the whole list. Instead, the algorithm maintains the invariant that
every unmarked node is reachable. If a traversing thread does not find a node,
or finds it marked, then that item is not in the set. As a result, contains() needs
only one wait-free traversal. To add an element to the list, add() traverses the list,
locks the target’s predecessor, and inserts the node. The remove() method is lazy,
taking two steps: first, mark the target node, logically removing it, and second,
redirect its predecessor’s next field, physically removing it.

9.7 Lazy Synchronization 209

In more detail, all methods traverse the list (possibly traversing logically and
physically removed nodes) ignoring the locks. The add() and remove() methods
lock the predA and currA nodes as before (Figs. 9.17 and 9.18), but validation
does not retraverse the entire list (Fig. 9.16) to determine whether a node is in
the set. Instead, because a node must be marked before being physically removed,
validation need only check that currA has not beenmarked. However, as Fig. 9.20
shows, for insertion and deletion, since predA is the one being modified, one
must also check that predA itself is not marked, and that it points to currA.
Logical removals require a small change to the abstraction map: an item is in
the set if, and only if it is referred to by an unmarked reachable node. Notice

1 private boolean validate(Node pred, Node curr) {
2 return !pred.marked && !curr.marked && pred.next == curr;
3 }

Figure 9.16 The LazyList class: validation checks that neither the pred nor the curr node
has been logically deleted, and that pred points to curr .

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();
10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key == key) {
15 return false;
16 } else {
17 Node node = new Node(item);
18 node.next = curr;
19 pred.next = node;
20 return true;
21 }
22 }
23 } finally {
24 curr.unlock();
25 }
26 } finally {
27 pred.unlock();
28 }
29 }
30 }

Figure 9.17 The LazyList class: add() method.

210 Chapter 9 Linked Lists: The Role of Locking

1 public boolean remove(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();
10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key != key) {
15 return false;
16 } else {
17 curr.marked = true;
18 pred.next = curr.next;
19 return true;
20 }
21 }
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }
29 }

Figure 9.18 The LazyList class: the remove() method removes nodes in two steps, logical
and physical.

1 public boolean contains(T item) {
2 int key = item.hashCode();
3 Node curr = head;
4 while (curr.key < key)
5 curr = curr.next;
6 return curr.key == key && !curr.marked;
7 }

Figure 9.19 The LazyList class: the contains() method.

that the path along which the node is reachable may contain marked nodes. The
reader should check that any unmarked reachable node remains reachable, even
if its predecessor is logically or physically deleted. As in the OptimisticList
algorithm, add() and remove() are not starvation-free, because list traversals may
be arbitrarily delayed by ongoing modifications.
The contains() method (Fig. 9.19) traverses the list once ignoring locks and

returns true if the node it was searching for is present and unmarked, and false

9.7 Lazy Synchronization 211

0

00 a0

head tail

0 00 a1

predA

head tail

currA(a)

(b)

0

predA currA

Figure 9.20 The LazyList class: why validation is needed. In Part (a) of the figure, thread A
is attempting to remove node a. After it reaches the point where predA refers to currA , and
before it acquires locks on these nodes, the node predA is logically and physically removed.
After A acquires the locks, validation will detect the problem. In Part (b) of the figure, A is
attempting to remove node a. After it reaches the point where predA refers to currA , and
before it acquires locks on these nodes, a new node is added between predA and currA . After
A acquires the locks, even though neither predA or currA are marked, validation detects that
predA is not the same as currA , and A’s call to remove() will be restarted.

otherwise. It is thus wait-free.5 A marked node’s value is ignored. Each time the
traversal moves to a new node, the new node has a larger key than the previous
one, even if the node is logically deleted.
The linearization points for LazyList add() and unsuccessful remove() calls

are the same as for the OptimisticList. A successful remove() call is linearized
when the mark is set (Line 17), and a successful contains() call is linearized
when an unmarked matching node is found.
To understand how to linearize an unsuccessful contains(), let us consider

the scenario depicted in Fig. 9.21. In Part (a), node a is marked as removed (its
marked field is set) and thread A is attempting to find the node matching a’s key.
WhileA is traversing the list, currA and all nodes between currA and a including
a are removed, both logically and physically. Thread A would still proceed to the
point where currA points to a, and would detect that a is marked and no longer
in the abstract set. The call could be linearized at this point.
Now let us consider the scenario depicted in Part (b). While A is traversing

the removed section of the list leading to a, and before it reaches the removed

5 Notice that the list ahead of a given traversing thread cannot grow forever due to newly inserted
keys, since the key size is finite.

212 Chapter 9 Linked Lists: The Role of Locking

0

a1 1

0 00 b0

0 b

(a)

(b)

predA

currA

head tail

head tail

. . .

a1 1

currA

. . .

0

0a

0

Figure 9.21 The LazyList class: linearizing an unsuccessful contains() call. Dark nodes are
physically in the list and white nodes are physically removed. In Part (a), while thread A is
traversing the list, a concurrent remove() call disconnects the sublist referred to by curr .
Notice that nodes with items a and b are still reachable, so whether an item is actually in the
list depends only on whether it is marked. Thread A’s call is linearized at the point when it
sees that a is marked and is no longer in the abstract set. Alternatively, let us consider the
scenario depicted in Part (b). While thread A is traversing the list leading to marked node
a, another thread adds a new node with key a. It would be wrong to linearize thread A’s
unsuccessful contains() call to when it found the marked node a, since this point occurs
after the insertion of the new node with key a to the list.

node a, another thread adds a new node with a key a to the reachable part of the
list. Linearizing thread A’s unsuccessful contains() method at the point it finds
the marked node a would be wrong, since this point occurs after the insertion
of the new node with key a to the list. We therefore linearize an unsuccessful
contains() method call within its execution interval at the earlier of the fol-
lowing points: (1) the point where a removed matching node, or a node with a
key greater than the one being searched for is found, and (2) the point immedi-
ately before a new matching node is added to the list. Notice that the second is
guaranteed to be within the execution interval because the insertion of the new
node with the same key must have happened after the start of the contains()
method, or the contains() method would have found that item. As can be

9.8 Non-Blocking Synchronization 213

seen, the linearization point of the unsuccessful contains() is determined by
the ordering of events in the execution, and is not a predetermined point in the
method’s code.
One benefit of lazy synchronization is that we can separate unobtrusive logi-

cal steps such as setting a flag, from disruptive physical changes to the structure,
such as disconnecting a node. The example presented here is simple because we
disconnect one node at a time. In general, however, delayed operations can be
batched and performed lazily at a convenient time, reducing the overall disrup-
tiveness of physical modifications to the structure.
The principal disadvantage of the LazyList algorithm is that add() and

remove() calls are blocking: if one thread is delayed, then others may also be
delayed.

9.8 Non-Blocking Synchronization

We have seen that it is sometimes a good idea to mark nodes as logically removed
before physically removing them from the list. We now show how to extend this
idea to eliminate locks altogether, allowing all three methods, add(), remove(),
and contains(), to be nonblocking. (The first twomethods are lock-free and the
last wait-free). A naı̈ve approach would be to use compareAndSet() to change
the next fields. Unfortunately, this idea does not work. In Fig. 9.22, part (a)
shows a thread A attempting to remove a node a while thread B is adding a
node b. Suppose A applies compareAndSet() to head.next, while B applies
compareAndSet() to a.next. The net effect is that a is correctly deleted but b
is not added to the list. In part (b) of the figure, A attempts to remove a, the first
node in the list, while B is about to remove b, where a points to b. Suppose A
applies compareAndSet() to head.next, while B applies compareAndSet() to
a.next. The net effect is to remove a, but not b.
If B wants to remove currB from the list, it might call compareAndSet()

to set predB ’s next field to currB ’s successor. It is not hard to see that if these
two threads try to remove these adjacent nodes concurrently, the list will end up
with b not being removed. A similar situation for a pair of concurrent add() and
remove() methods is depicted in the upper part of Fig. 9.22.
Clearly, we need a way to ensure that a node’s fields cannot be updated, after

that node has been logically or physically removed from the list. Our approach is
to treat the node’s next and marked fields as a single atomic unit: any attempt to
update the next field when the marked field is true will fail.

Pragma 9.8.1. An AtomicMarkableReference<T> is an object from the
java.util.concurrent.atomic package that encapsulates both a reference to an
object of type T and a Boolean mark. These fields can be updated atomically,
either together or individually. For example, the compareAndSet() method

214 Chapter 9 Linked Lists: The Role of Locking

b

head tail

ca

remove bremove a

remove a

b

head tail

ca

add b

(a)

(b)

Figure 9.22 The LockFreeList class: why mark and reference fields must be modified atomi-
cally. In Part (a) of the figure, thread A is about to remove a, the first node in the list, while
B is about to add b. Suppose A applies compareAndSet() to head.next, while B applies
compareAndSet() to a.next. The net effect is that a is correctly deleted but b is not added
to the list. In Part (b) of the figure, thread A is about to remove a, the first node in the list,
while B is about to remove b, where a points to b. Suppose A applies compareAndSet() to
head.next, while B applies compareAndSet() to a.next. The net effect is to remove a, but
not b.

tests the expected reference and mark values, and if both tests succeed,
replaces them with updated reference and mark values. As shorthand, the
attemptMark() method tests an expected reference value and if the test suc-
ceeds, replaces it with a new mark value. The get() method has an unusual
interface: it returns the object’s reference value and stores the mark value in a
Boolean array argument. Fig. 9.23 illustrates the interfaces of these methods.

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 boolean expectedMark,
4 boolean newMark);
5 public boolean attemptMark(T expectedReference,
6 boolean newMark);
7 public T get(boolean[] marked);

Figure 9.23 Some AtomicMarkableReference<T> methods: the compareAndSet()
method tests and updates both the mark and reference fields, while the attemptMark()
method updates the mark if the reference field has the expected value. The get()method
returns the encapsulated reference and stores the mark at position 0 in the argument
array.

9.8 Non-Blocking Synchronization 215

In C or C++, one could provide this functionality efficiently by “steal-
ing” a bit from a pointer, using bit-wise operators to extract the mark and
the pointer from a single word. In Java, of course, one cannot manipulate
pointers directly, so this functionality must be provided by a library.

As described in detail in Pragma 9.8.1, an AtomicMarkableReference<T>
object encapsulates both a reference to an object of type T and a Boolean mark.
These fields can be atomically updated, either together or individually.
We make each node’s next field an AtomicMarkableReference<Node>.

Thread A logically removes currA by setting the mark bit in the node’s next
field, and shares the physical removal with other threads performing add()
or remove(): as each thread traverses the list, it cleans up the list by physi-
cally removing (using compareAndSet()) any marked nodes it encounters. In
other words, threads performing add() and remove() do not traverse marked
nodes, they remove them before continuing. The contains() method remains
the same as in the LazyList algorithm, traversing all nodes whether they
are marked or not, and testing if an item is in the list based on its key and
mark.
It is worth pausing to consider a design decision that differentiates the

LockFreeList algorithm from the LazyList algorithm. Why do threads that
add or remove nodes never traverse marked nodes, and instead physically remove
all marked nodes they encounter? Suppose that threadA were to traverse marked
nodes without physically removing them, and after logically removing currA,
were to attempt to physically remove it as well. It could do so by calling
compareAndSet() to try to redirect predA’s next field, simultaneously veri-
fying that predA is not marked and that it refers to currA. The difficulty is that
because A is not holding locks on predA and currA, other threads could insert
new nodes or remove predA before the compareAndSet() call.
Consider a scenario in which another thread marks predA. As illustrated

in Fig. 9.22, we cannot safely redirect the next field of a marked node, so A
would have to restart the physical removal by retraversing the list. This time,
however, A would have to physically remove predA before it could remove
currA. Even worse, if there is a sequence of logically removed nodes leading to
predA, Amust remove them all, one after the other, before it can remove currA
itself.
This example illustrates why add() and remove() calls do not traverse marked

nodes: when they arrive at the node to be modified, they may be forced to
retraverse the list to remove previous marked nodes. Instead, we choose to have
both add() and remove() physically remove any marked nodes on the path to
their target node. The contains() method, by contrast, performs no modifi-
cation, and therefore need not participate in the cleanup of logically removed
nodes, allowing it, as in the LazyList, to traverse both marked and unmarked
nodes.

216 Chapter 9 Linked Lists: The Role of Locking

In presenting our LockFreeList algorithm, we factor out functionality
common to the add() and remove() methods by creating an inner Window class to
help navigation. As shown in Fig. 9.24, a Window object is a structure with pred
and curr fields. The find() method takes a head node and a key a, and traverses
the list, seeking to set pred to the node with the largest key less than a, and curr
to the node with the least key greater than or equal to a. As thread A traverses
the list, each time it advances currA, it checks whether that node is marked
(Line 16). If so, it calls compareAndSet() to attempt to physically remove the
node by setting predA’s next field to currA’s next field. This call tests both the
field’s reference and Boolean mark values, and fails if either value has changed.
A concurrent thread could change the mark value by logically removing predA,
or it could change the reference value by physically removing currA. If the call
fails, A restarts the traversal from the head of the list; otherwise the traversal
continues.
The LockFreeList algorithm uses the same abstraction map as the LazyList

algorithm: an item is in the set if, and only if it is in an unmarked reachable node.

1 class Window {
2 public Node pred, curr;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }
7 public Window find(Node head, int key) {
8 Node pred = null, curr = null, succ = null;
9 boolean[] marked = {false};
10 boolean snip;
11 retry: while (true) {
12 pred = head;
13 curr = pred.next.getReference();
14 while (true) {
15 succ = curr.next.get(marked);
16 while (marked[0]) {
17 snip = pred.next.compareAndSet(curr, succ, false, false);
18 if (!snip) continue retry;
19 curr = succ;
20 succ = curr.next.get(marked);
21 }
22 if (curr.key >= key)
23 return new Window(pred, curr);
24 pred = curr;
25 curr = succ;
26 }
27 }
28 }

Figure 9.24 The Window class: the find() method returns a structure containing the nodes
on either side of the key. It removes marked nodes when it encounters them.

9.8 Non-Blocking Synchronization 217

The compareAndSet() call at Line 17 of the find() method is an example of a
benevolent side effect : it changes the concrete list without changing the abstract
set, because removing a marked node does not change the value of the abstrac-
tion map.
Fig. 9.25 shows the LockFreeList class’s add() method. Suppose thread A

calls add(a). A uses find() to locate predA and currA. If currA’s key is equal
to a’s, the call returns false. Otherwise, add() initializes a new node a to hold
a, and sets a to refer to currA. It then calls compareAndSet() (Line 11)
to set predA to a. Because the compareAndSet() tests both the mark and
the reference, it succeeds only if predA is unmarked and refers to currA. If
the compareAndSet() is successful, the method returns true, and otherwise it
starts over.
Fig. 9.26 shows the LockFreeList algorithm’s remove() method. When A

calls remove() to remove item a, it uses find() to locate predA and currA. If
currA’s key fails to match a’s, the call returns false. Otherwise, remove() uses
a compareAndSet() to attempt to mark currA as logically removed (Line 27).
This call succeeds only if no other thread has set the mark first. If it succeeds,
the call returns true. A single attempt is made to physically remove the node, but
there is no need to try again because the node will be removed by the next thread
to traverse that region of the list. If the compareAndSet() call fails, remove()
starts over.
The LockFreeList algorithm’s contains() method is virtually the same as

that of the LazyList (Fig. 9.27). There is one small change: to test if curr is
marked we must apply curr.next.get(marked) and check that marked[0] is
true.

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Window window = find(head, key);
5 Node pred = window.pred, curr = window.curr;
6 if (curr.key == key) {
7 return false;
8 } else {
9 Node node = new Node(item);
10 node.next = new AtomicMarkableReference(curr, false);
11 if (pred.next.compareAndSet(curr, node, false, false)) {
12 return true;
13 }
14 }
15 }
16 }

Figure 9.25 The LockFreeList class: the add() method calls find() to locate predA and
currA . It adds a new node only if predA is unmarked and refers to currA .

218 Chapter 9 Linked Lists: The Role of Locking

17 public boolean remove(T item) {
18 int key = item.hashCode();
19 boolean snip;
20 while (true) {
21 Window window = find(head, key);
22 Node pred = window.pred, curr = window.curr;
23 if (curr.key != key) {
24 return false;
25 } else {
26 Node succ = curr.next.getReference();
27 snip = curr.next.compareAndSet(succ, succ, false, true);
28 if (!snip)
29 continue;
30 pred.next.compareAndSet(curr, succ, false, false);
31 return true;
32 }
33 }
34 }

Figure 9.26 The LockFreeList class: the remove() method calls find() to locate predA and
currA , and atomically marks the node for removal.

35 public boolean contains(T item) {
36 boolean[] marked = false;
37 int key = item.hashCode();
38 Node curr = head;
39 while (curr.key < key) {
40 curr = curr.next.getReference();
41 Node succ = curr.next.get(marked);
42 }
43 return (curr.key == key && !marked[0])
44 }

Figure 9.27 The LockFreeList class: the wait-free contains() method is almost the same
as in the LazyList class. There is one small difference: it calls curr.next.get(marked) to
test whether curr is marked.

9.9 Discussion

We have seen a progression of list-based lock implementations in which the
granularity and frequency of locking was gradually reduced, eventually reach-
ing a fully nonblocking list. The final transition from the LazyList to the
LockFreeList exposes some of the design decisions that face concurrent
programmers. As we will see, approaches such as optimistic and lazy syn-
chronization will appear time and again when designing more complex data
structures.

9.11 Exercises 219

On the one hand, the LockFreeList algorithm guarantees progress in the face
of arbitrary delays. However, there is a price for this strong progress guarantee:

� The need to support atomic modification of a reference and a Boolean mark
has an added performance cost.6

� As add() and remove() traverse the list, they must engage in concurrent
cleanup of removed nodes, introducing the possibility of contention among
threads, sometimes forcing threads to restart traversals, even if there was no
change near the node each was trying to modify.

On the other hand, the lazy lock-based list does not guarantee progress in the
face of arbitrary delays: its add() and remove() methods are blocking. However,
unlike the lock-free algorithm, it does not require each node to include an atom-
ically markable reference. It also does not require traversals to clean up logically
removed nodes; they progress down the list, ignoring marked nodes.
Which approach is preferable depends on the application. In the end, the

balance of factors such as the potential for arbitrary thread delays, the relative
frequency of calls to the add() and remove() methods, the overhead of imple-
menting an atomically markable reference, and so on determine the choice of
whether to lock, and if so, at what granularity.

9.10 Chapter Notes

Lock coupling was invented by Rudolf Bayer andMario Schkolnick [19]. The first
designs of lock-free linked-list algorithms are credited to John Valois [147]. The
Lock-free list implementation shown here is a variation on the lists of Maged
Michael [114], who based his work on earlier linked-list algorithms by Tim
Harris [53]. This algorithm is referred to by many as the Harris-Michael algo-
rithm. The Harris-Michael algorithm is the one used in the Java Concurrency
Package. The OptimisticList algorithm was invented for this chapter, and the
lazy algorithm is credited to Steven Heller, Maurice Herlihy, Victor Luchangco,
Mark Moir, Nir Shavit, and Bill Scherer [55].

9.11 Exercises

Exercise 100. Describe how to modify each of the linked list algorithms if object
hash codes are not guaranteed to be unique.

6 In the Java Concurrency Package, for example, this cost is somewhat reduced by using a reference
to an intermediate dummy node to signify that the marked bit is set.

220 Chapter 9 Linked Lists: The Role of Locking

Exercise 101. Explain why the fine-grained locking algorithm is not subject to
deadlock.

Exercise 102. Explain why the fine-grained list’s add() method is linearizable.

Exercise 103. Explain why the optimistic and lazy locking algorithms are not sub-
ject to deadlock.

Exercise 104. Show a scenario in the optimistic algorithm where a thread is for-
ever attempting to delete a node.

Hint : since we assume that all the individual node locks are starvation-free,
the livelock is not on any individual lock, and a bad execution must repeatedly
add and remove nodes from the list.

Exercise 105. Provide the code for the contains() method missing from the fine-
grained algorithm. Explain why your implementation is correct.

Exercise 106. Is the optimistic list implementation still correct if we switch the
order in which add() locks the pred and curr entries?

Exercise 107. Show that in the optimistic list algorithm, if predA is not null, then
tail is reachable from predA, even if predA itself is not reachable.

Exercise 108. Show that in the optimistic algorithm, the add() method needs to
lock only pred.

Exercise 109. In the optimistic algorithm, the contains() method locks two
entries before deciding whether a key is present. Suppose, instead, it locks no
entries, returning true if it observes the value, and false otherwise.
Either explain why this alternative is linearizable, or give a counterexample

showing it is not.

Exercise 110. Would the lazy algorithm still work if we marked a node as removed
simply by setting its next field to null?Why or why not?What about the lock-free
algorithm?

Exercise 111. In the lazy algorithm, can predA ever be unreachable? Justify your
answer.

Exercise 112. Your new employee claims that the lazy list’s validation method
(Fig. 9.16) can be simplified by dropping the check that pred.next is equal to
curr. After all, the code always sets pred to the old value of curr, and before
pred.next can be changed, the new value of curr must be marked, causing the
validation to fail. Explain the error in this reasoning.

Exercise 113. Can you modify the lazy algorithm’s remove() so it locks only one
node?

9.11 Exercises 221

Exercise 114. In the lock-free algorithm, argue the benefits and drawbacks of
having the contains() method help in the cleanup of logically removed entries.

Exercise 115. In the lock-free algorithm, if an add() method call fails because
pred does not point to curr, but pred is not marked, do we need to traverse
the list again from head in order to attempt to complete the call?

Exercise 116. Would the contains() method of the lazy and lock-free algorithms
still be correct if logically removed entries were not guaranteed to be sorted?

Exercise 117. The add() method of the lock-free algorithm never finds a marked
node with the same key. Can one modify the algorithm so that it will simply
insert its new added object into the existing marked node with same key if such
a node exists in the list, thus saving the need to insert a new node?

Exercise 118. Explain why the following cannot happen in the LockFreeList
algorithm. A node with item x is logically but not yet physically removed by some
thread, then the same item x is added into the list by another thread, and finally a
contains() call by a third thread traverses the list, finding the logically removed
node, and returning false, even though the linearization order of the remove()
and add() implies that x is in the set.

This page intentionally left blank

10Concurrent Queues and
the ABA Problem

10.1 Introduction

In the subsequent chapters, we look at a broad class of objects known as pools.
A pool is similar to the Set class studied in Chapter 9, with two main differences:
a pool does not necessarily provide a contains() method to test membership,
and it allows the same item to appear more than once. The Pool has get() and
set() methods as in Fig. 10.1. Pools show up in many places in concurrent sys-
tems. For example, in many applications, one or more producer threads produce
items to be consumed by one or more consumer threads. These items may be
jobs to perform, keystrokes to interpret, purchase orders to execute, or packets to
decode. Sometimes, producers are bursty, suddenly and briefly producing items
faster than consumers can consume them. To allow consumers to keep up, we
can place a buffer between the producers and the consumers. Items produced
faster than they can be consumed accumulate in the buffer, from which they are
consumed as quickly as possible. Often, pools act as producer–consumer buffers.
Pools come in several varieties.

� A pool can be bounded or unbounded. A bounded pool holds a limited number
of items. This limit is called its capacity. By contrast, an unbounded pool can
hold any number of items. Bounded pools are useful when we want to keep
producer and consumer threads loosely synchronized, ensuring that produc-
ers do not get too far ahead of consumers. Bounded pools may also be simpler
to implement than unbounded pools. On the other hand, unbounded pools
are useful when there is no need to set a fixed limit on how far producers can
outstrip consumers.

� Pool methods may be total, partial, or synchronous.

— A method is total if calls do not wait for certain conditions to become true.
For example, a get() call that tries to remove an item from an empty pool
immediately returns a failure code or throws an exception. If the pool is
bounded, a total set() that tries to add an item to a full pool immediately

The Art of Multiprocessor Programming. DOI: 10.1016/B978-0-12-397337-5.00010-1

Copyright © 2012 by Elsevier Inc. All rights reserved.
223

224 Chapter 10 Concurrent Queues and the ABA Problem

1 public interface Pool<T> {
2 void set(T item);
3 T get();
4 }

Figure 10.1 The Pool<T> interface.

returns a failure code or an exception. A total interface makes sense when
the producer (or consumer) thread has something better to do than wait
for the method call to take effect.

— A method is partial if calls may wait for conditions to hold. For example,
a partial get() call that tries to remove an item from an empty pool blocks
until an item is available to return. If the pool is bounded, a partial set()
call that tries to add an item to a full pool blocks until an empty slot is
available to fill. A partial interface makes sense when the producer (or con-
sumer) has nothing better to do than to wait for the pool to become nonfull
(or nonempty).

— A method is synchronous if it waits for another method to overlap its call
interval. For example, in a synchronous pool, a method call that adds an
item to the pool is blocked until that item is removed by another method
call. Symmetrically, a method call that removes an item from the pool is
blocked until another method call makes an item available to be removed.
(Such methods are partial.) Synchronous pools are used for communica-
tion in programming languages such as CSP and Ada in which threads
rendezvous to exchange information.

� Pools provide different fairness guarantees. They can be first-in-first-out
(a queue), last-in-first-out (a stack), or other, weaker properties. The impor-
tance of fairness when buffering using a pool is clear to anyone who has ever
called a bank or a technical support line, only to be placed in a pool of waiting
calls. The longer you wait, the more consolation you draw from the recorded
message asserting that calls are answered in the order they arrive. Perhaps.

10.2 Queues

In this chapter we consider a kind of pool that provides first-in-first-out (FIFO)
fairness. A sequential Queue<T> is an ordered sequence of items (of type T). It
provides an enq(x) method that puts item x at one end of the queue, called the
tail, and a deq() method that removes and returns the item at the other end of the
queue, called the head. A concurrent queue is linearizable to a sequential queue.
Queues are pools, where enq() implements set(), and deq() implements get().
We use queue implementations to illustrate a number of important principles. In
later chapters we consider pools that provide other fairness guarantees.

10.3 A Bounded Partial Queue 225

10.3 A Bounded Partial Queue

For simplicity, we assume it is illegal to add a null value to a queue. Of course,
there may be circumstances where it makes sense to add and remove null values,
but we leave it as an exercise to adapt our algorithms to accommodate null values.
Howmuch concurrency can we expect a bounded queue implementation with

multiple concurrent enqueuers and dequeuers to provide? Very informally, the
enq() and deq() methods operate on opposite ends of the queue, so as long as the
queue is neither full nor empty, an enq() call and a deq() call should, in principle,
be able to proceed without interference. For the same reason, concurrent enq()
calls probably will interfere, and the same holds for deq() calls. This informal
reasoning may sound convincing, and it is in fact mostly correct, but realizing
this level of concurrency is not trivial.
Here, we implement a bounded queue as a linked list. (We could also have

used an array.) Fig. 10.2 shows the queue’s fields and constructor, Figs. 10.3 and
10.4 show the enq() and deq() methods, and Fig. 10.5 shows a queue node. Like
the lists studied in Chapter 9, a queue node has value and next fields.
As seen in Fig. 10.6, the queue itself has head and tail fields that respectively

refer to the first and last nodes in the queue. The queue always contains a sen-
tinel node acting as a place-holder. Like the sentinel nodes in Chapter 9, it marks
a position in the queue, though its value is meaningless. Unlike the list algo-
rithms in Chapter 9, in which the same nodes always act as sentinels, the queue
repeatedly replaces the sentinel node. We use two distinct locks, enqLock and
deqLock, to ensure that at most one enqueuer, and at most one dequeuer at a
time can manipulate the queue object’s fields. Using two locks instead of one
ensures that an enqueuer does not lock out a dequeuer unnecessarily, and vice
versa. Each lock has an associated condition field. The enqLock is associated with

1 public class BoundedQueue<T> {
2 ReentrantLock enqLock, deqLock;
3 Condition notEmptyCondition, notFullCondition;
4 AtomicInteger size;
5 volatile Node head, tail;
6 int capacity;
7 public BoundedQueue(int _capacity) {
8 capacity = _capacity;
9 head = new Node(null);
10 tail = head;
11 size = new AtomicInteger(0);
12 enqLock = new ReentrantLock();
13 notFullCondition = enqLock.newCondition();
14 deqLock = new ReentrantLock();
15 notEmptyCondition = deqLock.newCondition();
16 }

Figure 10.2 The BoundedQueue class: fields and constructor.

226 Chapter 10 Concurrent Queues and the ABA Problem

17 public void enq(T x) {
18 boolean mustWakeDequeuers = false;
19 enqLock.lock();
20 try {
21 while (size.get() == capacity)
22 notFullCondition.await();
23 Node e = new Node(x);
24 tail.next = tail; tail = e;
25 if (size.getAndIncrement() == 0)
26 mustWakeDequeuers = true;
27 } finally {
28 enqLock.unlock();
29 }
30 if (mustWakeDequeuers) {
31 deqLock.lock();
32 try {
33 notEmptyCondition.signalAll();
34 } finally {
35 deqLock.unlock();
36 }
37 }
38 }

Figure 10.3 The BoundedQueue class: the enq() method.

39 public T deq() {
40 T result;
41 boolean mustWakeEnqueuers = false;
42 deqLock.lock();
43 try {
44 while (size.get() == 0)
45 notEmptyCondition.await();
46 result = head.next.value;
47 head = head.next;
48 if (size.getAndDecrement() == capacity) {
49 mustWakeEnqueuers = true;
50 }
51 } finally {
52 deqLock.unlock();
53 }
54 if (mustWakeEnqueuers) {
55 enqLock.lock();
56 try {
57 notFullCondition.signalAll();
58 } finally {
59 enqLock.unlock();
60 }
61 }
62 return result;
63 }

Figure 10.4 The BoundedQueue class: the deq() method.

10.3 A Bounded Partial Queue 227

64 protected class Node {
65 public T value;
66 public volatile Node next;
67 public Node(T x) {
68 value = x;
69 next = null;
70 }
71 }
72 }

Figure 10.5 BoundedQueue class: List Node.

the notFullCondition condition, used to notify waiting dequeuers when the
queue is no longer full. The deqLock is associated with notEmptyCondition,
used to notify waiting enqueuers when the queue is no longer empty.
Since the queue is bounded, we must keep track of the number of empty

slots. The size field is an AtomicInteger that tracks the number of objects cur-
rently in the queue. This field is decremented by deq() calls and incremented by
enq() calls.
The enq() method (Fig. 10.3) works as follows. A thread acquires the enqLock

(Line 19), and reads the size field (Line 21). While that field is equal to the
capacity, the queue is full, and the enqueuer must wait until a dequeuer makes
room. The enqueuer waits on the notFullCondition field (Line 22), releasing
the enqueue lock temporarily, and blocking until that condition is signaled. Each
time the thread awakens (Line 22), it checks whether there is room, and if not,
goes back to sleep.
Once the number of empty slots exceeds zero, however, the enqueuer may pro-

ceed. We note that once the enqueuer observes an empty slot, while the enqueue
is in progress no other thread can fill the queue, because all the other enqueuers
are locked out, and a concurrent dequeuer can only increase the number of empty
slots. (Synchronization for the enq() method is symmetric.)
We must carefully check that this implementation does not suffer from the

kind of “lost-wakeup” bug described in Chapter 8. Care is needed because an
enqueuer encounters a full queue in two steps: first, it sees that size is the queue
capacity, and second, it waits on notFullCondition until there is room in the
queue. When a dequeuer changes the queue from full to not-full, it acquires
enqLock and signals notFullCondition. Even though the size field is not pro-
tected by the enqLock, the dequeuer acquires the enqLock before it signals the
condition, so the dequeuer cannot signal between the enqueuer’s two steps.
The deq() method proceeds as follows. It reads the size field to check whether

the queue is empty. If so, the dequeuer must wait until an item is enqueued. Like
the enq() method, the dequeuer waits on notEmptyCondition, which temporar-
ily releases deqLock, and blocks until the condition is signaled. Each time the
thread awakens, it checks whether the queue is empty, and if so, goes back to sleep.
It is important to understand that the abstract queue’s head and tail items

are not always the same as those referenced by head and tail. An item is logi-
cally added to the queue as soon as the last node’s next field is redirected to the

228 Chapter 10 Concurrent Queues and the ABA Problem

 c abd

e
next

sentinel

tail head

enq
lock

deq
locksize

new sentinel

3 4 3 010010

1

2
3

new

Figure 10.6 The enq() and deq() methods of the BoundedQueue with 4 slots. First a node
is enqueued into the queue by acquiring the enqLock. The enq() checks that the size is
3 which is less than the bound. It then redirects the next field of the node referenced by
the tail field (step 1), redirects tail to the new node (step 2), increments the size to 4,
and releases the lock. Since size is now 4, any further calls to enq() will cause the threads
to block until the notFullCondition is signalled by some deq(). Next, a node is dequeued
from the queue by some thread. The deq() acquires the deqLock, reads the new value b from
the successor of the node referenced by head (this node is the current sentinel), redirects
head to this successor node (step 3), decrements the size to 3, and releases the lock.
Before completing the deq(), because the size was 4 when it started, the thread acquires
the enqLock and signals any enqueuers waiting on notFullCondition that they can proceed.

new item (the linearization point of the enq()), even if the enqueuer has not yet
updated tail. For example, a thread can hold the enqLock and be in the pro-
cess of inserting a new node. Suppose it has not yet redirected the tail field.
A concurrent dequeuing thread could acquire the deqLock, read and return the
new node’s value, and redirect the head to the new node, all before the enqueuer
redirects tail to the newly inserted node.
Once the dequeuer establishes that the queue is nonempty, the queue will

remain nonempty for the duration of the deq() call, because all other dequeuers
have been locked out. Consider the first nonsentinel node in the queue (i.e., the
node referenced by the sentinel node’s next field). The dequeuer reads this node’s
value field, and sets the queue’s head to refer to it, making it the new sentinel
node. The dequeuer then decrements size and releases deqLock. If the dequeuer
found the former size was the queue capacity, then there may be enqueuers wait-
ing on notEmptyCondition, so the dequeuer acquires enqLock, and signals all
such threads to wake up.
One drawback of this implementation is that concurrent enq() and deq()

calls interfere with each other, but not through locks. All method calls apply
getAndIncrement() or getAndDecrement() calls to the size field. These meth-
ods are more expensive than ordinary reads–writes, and they could cause a
sequential bottleneck.

10.4 An Unbounded Total Queue 229

One way to reduce such interactions is to split this field into two counters:
enqSideSize is an integer field incremented by enq(), and deqSideSize is an
integer field decremented by deq(). A thread calling enq() tests enqSideSize, and
as long as it is less than the capacity, it proceeds. When the field reaches capacity,
the thread locks deqLock, adds deqSize to EnqSize, and resets deqSideSize
to 0. Instead of synchronizing on every method call, this technique synchronizes
sporadically when the enqueuer’s size estimate becomes too large.

10.4 An Unbounded Total Queue

We now describe a different kind of queue that can hold an unbounded number
of items. The enq() method always enqueues its item, and deq() throws
EmptyException if there is no item to dequeue. The representation is the same
as the bounded queue, except there is no need to count the number of items in
the queue, or to provide conditions on which to wait. As illustrated in Figs. 10.7
and 10.8, this algorithm is simpler than the bounded algorithm.

1 public void enq(T x) {
2 enqLock.lock();
3 try {
4 Node e = new Node(x);
5 tail.next = e;
6 tail = e;
7 } finally {
8 enqLock.unlock();
9 }

10 }

Figure 10.7 The UnboundedQueue<T> class: the enq() method.

11 public T deq() throws EmptyException {
12 T result;
13 deqLock.lock();
14 try {
15 if (head.next == null) {
16 throw new EmptyException();
17 }
18 result = head.next.value;
19 head = head.next;
20 } finally {
21 deqLock.unlock();
22 }
23 return result;
24 }

Figure 10.8 The UnboundedQueue<T> class: the deq() method.

230 Chapter 10 Concurrent Queues and the ABA Problem

This queue cannot deadlock, because each method acquires only one lock,
either enqLock or deqLock. A sentinel node alone in the queue will never be
deleted, so each enq() call will succeed as soon as it acquires the lock. Of course,
a deq() method may fail if the queue is empty (i.e., if head.next is null). As in
the earlier queue implementations, an item is actually enqueued when the enq()
call sets the last node’s next field to the new node, even before enq() resets tail
to refer to the new node. After that instant, the new item is reachable along a
chain of the next references. As usual, the queue’s actual head and tail are not
necessarily the items referenced by head and tail. Instead, the actual head is
the successor of the node referenced by head, and the actual tail is the last item
reachable from the head. Both the enq() and deq() methods are total as they do
not wait for the queue to become empty or full.

10.5 An Unbounded Lock-Free Queue

We now describe the LockFreeQueue<T> class, an unbounded lock-free queue
implementation. This class, depicted in Figs. 10.9 through 10.11, is a natural

1 public class Node {
2 public T value;
3 public AtomicReference<Node> next;
4 public Node(T value) {
5 this.value = value;
6 next = new AtomicReference<Node>(null);
7 }
8 }

Figure 10.9 The LockFreeQueue<T> class: list node.

9 public void enq(T value) {
10 Node node = new Node(value);
11 while (true) {
12 Node last = tail.get();
13 Node next = last.next.get();
14 if (last == tail.get()) {
15 if (next == null) {
16 if (last.next.compareAndSet(next, node)) {
17 tail.compareAndSet(last, node);
18 return;
19 }
20 } else {
21 tail.compareAndSet(last, next);
22 }
23 }
24 }
25 }

Figure 10.10 The LockFreeQueue<T> class: the enq() method.

10.5 An Unbounded Lock-Free Queue 231

26 public T deq() throws EmptyException {
27 while (true) {
28 Node first = head.get();
29 Node last = tail.get();
30 Node next = first.next.get();
31 if (first == head.get()) {
32 if (first == last) {
33 if (next == null) {
34 throw new EmptyException();
35 }
36 tail.compareAndSet(last, next);
37 } else {
38 T value = next.value;
39 if (head.compareAndSet(first, next))
40 return value;
41 }
42 }
43 }
44 }

Figure 10.11 The LockFreeQueue<T> class: the deq() method.

extension of the unbounded total queue of Section 10.4. Its implementation
prevents method calls from starving by having the quicker threads help the slower
threads.
As done earlier, we represent the queue as a list of nodes. However, as shown

in Fig. 10.9, each node’s next field is an AtomicReference<Node> that refers to
the next node in the list. As can be seen in Fig. 10.12, the queue itself consists of
two AtomicReference<Node> fields: head refers to the first node in the queue,
and tail to the last. Again, the first node in the queue is a sentinel node, whose
value is meaningless. The queue constructor sets both head and tail to refer to
the sentinel.
An interesting aspect of the enq() method is that it is lazy: it takes place in

two distinct steps. To make this method lock-free, threads may need to help one
another. Fig. 10.12 illustrates these steps.
In the following description the line numbers refer to Figs. 10.9 through 10.11.

Normally, the enq() method creates a new node (Line 10), locates the last node
in the queue (Lines 12–13), and performs the following two steps:

1. It calls compareAndSet() to append the new node (Line 16), and
2. calls compareAndSet() to change the queue’s tail field from the prior last
node to the current last node (Line 17).

Because these two steps are not executed atomically, every othermethod call must
be prepared to encounter a half-finished enq() call, and to finish the job. This is
a real-world example of the “helping” technique we first saw in the universal
construction of Chapter 6.

232 Chapter 10 Concurrent Queues and the ABA Problem

next

released node
CAS next

CAS tail

tail head

2

value sentinel

new

1

read value1

CAS head2

Figure 10.12 The lazy lock-free enq() and deq() methods of the LockFreeQueue. A node
is inserted into the queue in two steps. First, a compareAndSet() call changes the next
field of the node referenced by the queue’s tail from null to the new node. Then a
compareAndSet() call advances tail itself to refer to the new node. An item is removed
from the queue in two steps. A compareAndSet() call reads the item from the node referred
to by the sentinel node, and then redirects head from the current sentinel to the sentinel’s
next node, making the latter the new sentinel. Both enq() and deq() methods help complete
unfinished tail updates.

We now review all the steps in detail. An enqueuer creates a new node with the
new value to be enqueued (Line 10), reads tail, and finds the node that appears
to be last (Lines 12–13). To verify that node is indeed last, it checks whether that
node has a successor (Line 15). If so, the thread attempts to append the new
node by calling compareAndSet() (Line 16). (A compareAndSet() is required
because other threads may be trying the same thing.) If the compareAndSet()
succeeds, the thread uses a second compareAndSet() to advance tail to the
new node (Line 17). Even if this second compareAndSet() call fails, the thread
can still return successfully because, as we will see, the call fails only if some
other thread “helped” it by advancing tail. If the tail node has a successor (Line
20), then the method tries to “help” other threads by advancing tail to refer
directly to the successor (Line 21) before trying again to insert its own node.
This enq() is total, meaning that it never waits for a dequeuer. A successful enq()
is linearized at the instant where the executing thread (or a concurrent help-
ing thread) calls compareAndSet() to redirect the tail field to the new node at
Line 21.
The deq() method is similar to its total counterpart from the UnboundedQueue.

If the queue is nonempty, the dequeuer calls compareAndSet() to change head
from the sentinel node to its successor, making the successor the new sentinel
node. The deq() method makes sure that the queue is not empty in the same way
as before: by checking that the next field of the head node is not null.
There is, however, a subtle issue in the lock-free case, depicted in Fig. 10.13:

before advancing head one must make sure that tail is not left referring to
the sentinel node which is about to be removed from the queue. To avoid this
problem we add a test: if head equals tail (Line 32) and the (sentinel) node
they refer to has a non-null next field (Line 33), then the tail is deemed to

10.6 Memory Reclamation and the ABA Problem 233

released
node

tail head

sentinel

new

a

b

Figure 10.13 Why dequeuers must help advance tail in Line 36 of Fig. 10.11. Consider the
scenario in which a thread enqueuing node b has redirected a’s next field to b, but has yet
to redirect tail from a to b. If another thread starts dequeuing, it will read b’s value and
redirect head from a to b, effectively removing a while tail still refers to it. To avoid this
problem, the dequeuing thread must help advance tail from a to b before redirecting head.

be lagging behind. As in the enq() method, deq() then attempts to help make
tail consistent by swinging it to the sentinel node’s successor (Line 36), and
only then updates head to remove the sentinel (Line 39). As in the partial queue,
the value is read from the successor of the sentinel node (Line 38). If this method
returns a value, then its linearization point occurs when it completes a successful
compareAndSet() call at Line 39, and otherwise it is linearized at Line 33.
It is easy to check that the resulting queue is lock-free. Every method call first

checks for an incomplete enq() call, and tries to complete it. In the worst case, all
threads are trying to advance the queue’s tail field, and one of them must suc-
ceed. A thread fails to enqueue or dequeue a node only if another thread’s method
call succeeds in changing the reference, so some method call always completes.
As it turns out, being lock-free substantially enhances the performance of queue
implementations, and the lock-free algorithms tend to outperform the most effi-
cient blocking ones.

10.6 Memory Reclamation and the ABA Problem

Our queue implementations so far rely on the Java garbage collector to recy-
cle nodes after they have been dequeued. What happens if we choose to do our
own memory management? There are several reasons we might want to do this.
Languages such as C or C++ do not provide garbage collection. Even if garbage
collection is available, it is often more efficient for a class to do its own memory
management, particularly if it creates and releases many small objects. Finally, if
the garbage collection process is not lock-free, we might want to supply our own
lock-free memory reclamation.
A natural way to recycle nodes in a lock-free manner is to have each thread

maintain its own private free list of unused queue entries.

234 Chapter 10 Concurrent Queues and the ABA Problem

ThreadLocal<Node> freeList = new ThreadLocal<Node>() {
protected Node initialValue() { return null; };

};

When an enqueuing thread needs a new node, it tries to remove one from the
thread-local free list. If the free list is empty, it simply allocates a node using
the new operator. When a dequeuing thread is ready to retire a node, it links it
back onto the thread-local list. Because the list is thread-local, there is no need
for expensive synchronization. This design works well, as long as each thread

tail head

Thread A : about to CAS head from
 a to b

1

Threads B and C : deq a
and b into local pools

head

Thread A : CAS succeeds, incorrectly
 pointing to b which is still
 in the local pool

ab

a

tail

c

b

Threads B and C : enq a, c, and d

d

(a)

(b)

2

3 4

Figure 10.14 An ABA scenario: Assume that we use local pools of recycled nodes in our lock-free queue
algorithm. In Part (a), the dequeuer thread A of Fig. 10.11 observes that the sentinel node is a, and next
node is b. (Step 1) It then prepares to update head by applying a compareAndSet() with old value a and
new value b. (Step 2) Suppose however, that before it takes another step, other threads dequeue b, then its
successor, placing both a and b in the free pool. In Part (b) (Step 3) node a is reused, and eventually reappears
as the sentinel node in the queue. (Step 4) thread A now wakes up, calls compareAndSet(), and succeeds
in setting head to b, since the old value of head is indeed a. Now, head is incorrectly set to a recycled
node.

10.6 Memory Reclamation and the ABA Problem 235

performs roughly the same number of enqueues and dequeues. If there is an
imbalance, then there may be a need for more complex techniques, such as peri-
odically stealing nodes from other threads.
Surprisingly, perhaps, the lock-free queue will not work if nodes are recycled

in the most straightforward way. Consider the scenario depicted in Fig. 10.14.
In Part (a) of Fig. 10.14, the dequeuing thread A observes the sentinel node
is a, and the next node is b. It then prepares to update head by applying a
compareAndSet() with old value a and new value b. Before it takes another
step, other threads dequeue b and its successor, placing both a and b in the
free pool. Node a is recycled, and eventually reappears as the sentinel node in
the queue, as depicted in Part (b) of Fig. 10.14. The thread now wakes up, calls
compareAndSet(), and succeeds, since the old value of the head is indeed a.
Unfortunately, it has redirected head to a recycled node!
This phenomenon is called the “ABA” problem. It shows up often, especially

in dynamic memory algorithms that use conditional synchronization operations
such as compareAndSet(). Typically, a reference about to be modified by a
compareAndSet() changes from a, to b, and back to a again. As a result, the
compareAndSet() call succeeds even though its effect on the data structure has
changed, and no longer has the desired effect.
One straightforward way to fix this problem is to tag each atomic reference

with a unique stamp. As described in detail in Pragma 10.6.1, an
AtomicStampedReference<T> object encapsulates both a reference to an object
of Type T and an integer stamp. These fields can be atomically updated either
together or individually.

Pragma 10.6.1. The AtomicStampedReference<T> class encapsulates both
a reference to an object of Type T and an integer stamp. It generalizes the
AtomicMarkableReference<T> class , replacing the Boolean
mark with an integer stamp.
We usually use this stamp to avoid the ABA problem, incrementing the

value of the stamp each time we modify the object, although sometimes, as
in the LockFreeExchanger class of Chapter 11, we use the stamp to hold one
of a finite set of states.
The stamp and reference fields can be updated atomically, either together

or individually. For example, the compareAndSet() method tests expected
reference and stamp values, and if both tests succeed, replaces them with
updated reference and stamp values. As shorthand, the attemptStamp()
method tests an expected reference value and if the test succeeds, replaces
it with a new stamp value. The get() method has an unusual inter-
face: it returns the object’s reference value and stores the stamp value in
an integer array argument. Fig. 10.15 illustrates the signatures for these
methods.

(Pragma 9.8.1)

236 Chapter 10 Concurrent Queues and the ABA Problem

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 int expectedStamp,
4 int newStamp);
5 public T get(int[] stampHolder);
6 public void set(T newReference, int newStamp);

Figure 10.15 The AtomicStampedReference<T> class: the compareAndSet() and
get() methods. The compareAndSet() method tests and updates both the stamp and
reference fields, the get() method returns the encapsulated reference and stores the
stamp at position 0 in the argument array, and set() updates the encapsulated reference
and the stamp.

In a language like C or C++, one could provide this functionality effi-
ciently in a 64-bit architecture by “stealing” bits from pointers, although a
32-bit architecture would probably require a level of indirection.

As shown in Fig. 10.16, each time through the loop, deq() reads both the
reference and stamp values for the first, next, and last nodes (Lines 6–8). It
uses compareAndSet() to compare both the reference and the stamp (Line 17).

1 public T deq() throws EmptyException {
2 int[] lastStamp = new int[1];
3 int[] firstStamp = new int[1];
4 int[] nextStamp = new int[1];
5 while (true) {
6 Node first = head.get(firstStamp);
7 Node last = tail.get(lastStamp);
8 Node next = first.next.get(nextStamp);
9 if (first == last) {
10 if (next == null) {
11 throw new EmptyException();
12 }
13 tail.compareAndSet(last, next,
14 lastStamp[0], lastStamp[0]+1);
15 } else {
16 T value = next.value;
17 if (head.compareAndSet(first, next, firstStamp[0],

firstStamp[0]+1)) {
18 free(first);
19 return value;
20 }
21 }
22 }
23 }

Figure 10.16 The LockFreeQueueRecycle<T> class: the deq() method uses stamps to
avoid ABA.

10.6 Memory Reclamation and the ABA Problem 237

It increments the stamp each time it uses compareAndSet() to update a reference
(Lines 14 and 17).1

The ABA problem can occur inmany synchronization scenarios, not just those
involving conditional synchronization. For example, it can occur when using
only loads and stores. Conditional synchronization operations such as load-
linked/store-conditional, available on some architectures (see Appendix B), avoid
ABA by testing not whether a value is the same at two points in time, but whether
the value has ever changed between those points.

10.6.1 A Naı̈ve Synchronous Queue

We now turn our attention to an even tighter kind of synchronization. One or
more producer threads produce items to be removed, in first-in-first-out order,
by one or more consumer threads. Here, however, producers and consumers ren-
dezvous with one another: a producer that puts an item in the queue blocks until
that item is removed by a consumer, and vice versa. Such rendezvous synchro-
nization is built into languages such as CSP and Ada.
Fig. 10.17 illustrates the SynchronousQueue<T> class, a straightforward

monitor-based synchronous queue implementation. It has the following fields:
item is the first item waiting to be dequeued, enqueuing is a Boolean value
used by enqueuers to synchronize among themselves, lock is the lock used for
mutual exclusion, and condition is used to block partial methods. If the enq()
method finds enqueuing to be true (Line 10) then another enqueuer has sup-
plied an item and is waiting to rendezvous with a dequeuer, so the enqueuer
repeatedly releases the lock, sleeps, and checks whether enqueuing has become
false (Line 11). When this condition is satisfied, the enqueuer sets enqueuing to
true, which locks out other enqueuers until the current rendezvous is complete,
and sets item to refer to the new item (Lines 12–13). It then notifies any waiting
threads (Line 14), and waits until item becomes null (Lines 15–16). When the
wait is over, the rendezvous has occurred, so the enqueuer sets enqueuing to
false, notifies any waiting threads, and returns (Lines 17 and 19).
The deq() method simply waits until item is non-null (Lines 26–27), records

the item, sets the item field to null, and notifies any waiting threads before
returning the item (Lines 28–31).
While the design of the queue is relatively simple, it incurs a high synchro-

nization cost. At every point where one thread might wake up another, both
enqueuers and dequeuers wake up all waiting threads, leading to a number of
wakeups quadratic in the number of waiting threads. While it is possible to use
condition objects to reduce the number of wakeups, it is still necessary to block
on every call, which is expensive.

1 We ignore the remote possibility that the stamp could wrap around and cause an error.

238 Chapter 10 Concurrent Queues and the ABA Problem

1 public class SynchronousQueue<T> {
2 T item = null;
3 boolean enqueuing;
4 Lock lock;
5 Condition condition;
6 ...
7 public void enq(T value) {
8 lock.lock();
9 try {
10 while (enqueuing)
11 condition.await();
12 enqueuing = true;
13 item = value;
14 condition.signalAll();
15 while (item != null)
16 condition.await();
17 enqueuing = false;
18 condition.signalAll();
19 } finally {
20 lock.unlock();
21 }
22 }
23 public T deq() {
24 lock.lock();
25 try {
26 while (item == null)
27 condition.await();
28 T t = item;
29 item = null;
30 condition.signalAll();
31 return t;
32 } finally {
33 lock.unlock();
34 }
35 }
36 }

Figure 10.17 The SynchronousQueue<T> class.

10.7 Dual Data Structures

To reduce the synchronization overheads of the synchronous queue, we consider
an alternative synchronous queue implementation that splits enq() and deq()
methods into two steps. Here is how a dequeuer tries to remove an item from an
empty queue. In the first step, it puts a reservation object in the queue, indicat-
ing that the dequeuer is waiting for an enqueuer with which to rendezvous. The
dequeuer then spins on a flag in the reservation. Later, when an enqueuer discov-
ers the reservation, it fulfills the reservation by depositing an item and notifying

10.7 Dual Data Structures 239

the dequeuer by setting the reservation’s flag. Similarly, an enqueuer can wait
for a rendezvous partner by creating its own reservation, and spinning on the
reservation’s flag. At any time the queue itself contains either enq() reservations,
deq() reservations, or it is empty.
This structure is called a dual data structure, since the methods take effect

in two stages, reservation and fulfillment. It has a number of nice properties.
First, waiting threads can spin on a locally cached flag, which we have seen is
essential for scalability. Second, it ensures fairness in a natural way. Reservations
are queued in the order they arrive, ensuring that requests are fulfilled in the same
order. Note that this data structure is linearizable, since each partial method call
can be ordered when it is fulfilled.
The queue is implemented as a list of nodes, where a node represents either an

item waiting to be dequeued, or a reservation waiting to be fulfilled (Fig. 10.18).
A node’s type field indicates which. At any time, all queue nodes have the same
type: either the queue consists entirely of items waiting to be dequeued, or
entirely of reservations waiting to be fulfilled.
When an item is enqueued, the node’s item field holds the item, which is reset

to null when that item is dequeued. When a reservation is enqueued, the node’s
item field is null, and is reset to an item when fulfilled by an enqueuer.
Fig. 10.19 shows the SynchronousDualQueue’s constructor and enq() method.

(The deq() method is symmetric.) Just like the earlier queues we have considered,
the head field always refers to a sentinel node that serves as a place-holder, and
whose actual value is unimportant. The queue is empty when head and tail
agree. The constructor creates a sentinel node with an arbitrary value, referred to
by both head and tail.
The enq() method first checks whether the queue is empty or whether it con-

tains enqueued items waiting to be dequeued (Line 10). If so, then just as in the
lock-free queue, the method reads the queue’s tail field (Line 11), and checks
that the values read are consistent (Line 12). If the tail field does not refer to
the last node in the queue, then the method advances the tail field and starts
over (Lines 13–14). Otherwise, the enq() method tries to append the new node
to the end of the queue by resetting the tail node’s next field to refer to the new

1 private enum NodeType {ITEM, RESERVATION};
2 private class Node {
3 volatile NodeType type;
4 volatile AtomicReference<T> item;
5 volatile AtomicReference<Node> next;
6 Node(T myItem, NodeType myType) {
7 item = new AtomicReference<T>(myItem);
8 next = new AtomicReference<Node>(null);
9 type = myType;
10 }
11 }

Figure 10.18 The SynchronousDualQueue<T> class: queue node.

240 Chapter 10 Concurrent Queues and the ABA Problem

1 public SynchronousDualQueue() {
2 Node sentinel = new Node(null, NodeType.ITEM);
3 head = new AtomicReference<Node>(sentinel);
4 tail = new AtomicReference<Node>(sentinel);
5 }
6 public void enq(T e) {
7 Node offer = new Node(e, NodeType.ITEM);
8 while (true) {
9 Node t = tail.get(), h = head.get();
10 if (h == t || t.type == NodeType.ITEM) {
11 Node n = t.next.get();
12 if (t == tail.get()) {
13 if (n != null) {
14 tail.compareAndSet(t, n);
15 } else if (t.next.compareAndSet(n, offer)) {
16 tail.compareAndSet(t, offer);
17 while (offer.item.get() == e);
18 h = head.get();
19 if (offer == h.next.get())
20 head.compareAndSet(h, offer);
21 return;
22 }
23 }
24 } else {
25 Node n = h.next.get();
26 if (t != tail.get() || h != head.get() || n == null) {
27 continue;
28 }
29 boolean success = n.item.compareAndSet(null, e);
30 head.compareAndSet(h, n);
31 if (success)
32 return;
33 }
34 }
35 }

Figure 10.19 The SynchronousDualQueue<T> class: enq() method and constructor.

node (Line 15). If it succeeds, it tries to advance the tail to the newly appended
node (Line 16), and then spins, waiting for a dequeuer to announce that it has
dequeued the item by setting the node’s item field to null. Once the item is
dequeued, the method tries to clean up by making its node the new sentinel.
This last step serves only to enhance performance, because the implementation
remains correct, whether or not the method advances the head reference.
If, however, the enq() method discovers that the queue contains dequeuers’

reservations waiting to be fulfilled, then it tries to find a reservation to fulfill.
Since the queue’s head node is a sentinel with no meaningful value, enq() reads
the head’s successor (Line 25), checks that the values it has read are consistent
(Lines 26–28), and tries to switch that node’s item field from null to the item
being enqueued. Whether or not this step succeeds, the method tries to advance

10.9 Exercises 241

head (Line 30). If the compareAndSet() call succeeds (Line 29), the method
returns; otherwise it retries.

10.8 Chapter Notes

The partial queue employs a mixture of techniques adapted from Doug Lea [98]
and from an algorithm byMagedMichael andMichael Scott [115]. The lock-free
queue is a slightly simplified version of a queue algorithm by Maged Michael and
Michael Scott [115]. The synchronous queue implementations are adapted from
algorithms by Bill Scherer, Doug Lea, and Michael Scott [136].

10.9 Exercises

Exercise 119. Change the SynchronousDualQueue<T> class to work correctly
with null items.

Exercise 120. Consider the simple lock-free queue for a single enqueuer and a sin-
gle dequeuer, described earlier in Chapter 3. The queue is presented in Fig. 10.20.

1 class TwoThreadLockFreeQueue<T> {
2 int head = 0, tail = 0;
3 T[] items;
4 public TwoThreadLockFreeQueue(int capacity) {
5 head = 0; tail = 0;
6 items = (T[]) new Object[capacity];
7 }
8 public void enq(T x) {
9 while (tail - head == items.length) {};

10 items[tail % items.length] = x;
11 tail++;
12 }
13 public Object deq() {
14 while (tail - head == 0) {};
15 Object x = items[head % items.length];
16 head++;
17 return x;
18 }
19 }

Figure 10.20 A Lock-free FIFO queue with blocking semantics for a single enqueuer and
single dequeuer. The queue is implemented in an array. Initially the head and tail fields are
equal and the queue is empty. If the head and tail differ by capacity, then the queue is
full. The enq() method reads the head field, and if the queue is full, it repeatedly checks the
head until the queue is no longer full. It then stores the object in the array, and increments
the tail field. The deq() method works in a symmetric way.

242 Chapter 10 Concurrent Queues and the ABA Problem

This queue is blocking, that is, removing an item from an empty queue or
inserting an item to a full one causes the threads to block (spin). The surpris-
ing thing about this queue is that it requires only loads and stores and not a more
powerful read–modify–write synchronization operation. Does it however require
the use of a memory barrier? If not, explain, and if so, where in the code is such
a barrier needed and why?

Exercise 121. Design a bounded lock-based queue implementation using an array
instead of a linked list.

1. Allow parallelism by using two separate locks for head and tail.
2. Try to transform your algorithm to be lock-free. Where do you run into diffi-
culty?

Exercise 122. Consider the unbounded lock-based queue’s deq() method in
Fig. 10.8. Is it necessary to hold the lock when checking that the queue is not
empty? Explain.

Exercise 123. In Dante’s Inferno, he describes a visit to Hell. In a very recently
discovered chapter, he encounters five people sitting at a table with a pot of stew
in themiddle. Although each one holds a spoon that reaches the pot, each spoon’s
handle is much longer than each person’s arm, so no one can feed him- or herself.
They are famished and desperate.
Dante then suggests “why do not you feed one another?”
The rest of the chapter is lost.

1. Write an algorithm to allow these unfortunates to feed one another. Two or
more people may not feed the same person at the same time. Your algorithm
must be, well, starvation-free.

2. Discuss the advantages and disadvantages of your algorithm. Is it centralized,
decentralized, high or low in contention, deterministic or randomized?

Exercise 124. Consider the linearization points of the enq() and deq() methods
of the lock-free queue:

1. Can we choose the point at which the returned value is read from a node as
the linearization point of a successful deq()?

2. Can we choose the linearization point of the enq() method to be the point
at which the tail field is updated, possibly by other threads (consider if it is
within the enq()’s execution interval)? Argue your case.

Exercise 125. Consider the unbounded queue implementation shown in
Fig. 10.21. This queue is blocking, meaning that the deq() method does not
return until it has found an item to dequeue.

10.9 Exercises 243

1 public class HWQueue<T> {
2 AtomicReference<T>[] items;
3 AtomicInteger tail;
4 ...
5 public void enq(T x) {
6 int i = tail.getAndIncrement();
7 items[i].set(x);
8 }
9 public T deq() {

10 while (true) {
11 int range = tail.get();
12 for (int i = 0; i < range; i++) {
13 T value = items[i].getAndSet(null);
14 if (value != null) {
15 return value;
16 }
17 }
18 }
19 }
20 }

Figure 10.21 Queue used in Exercise 125.

The queue has two fields: items is a very large array, and tail is the index of
the next unused element in the array.

1. Are the enq() and deq() methods wait-free? If not, are they lock-free? Explain.
2. Identify the linearization points for enq() and deq(). (Careful! They may be
execution-dependent.)

This page intentionally left blank

11Concurrent Stacks
and Elimination

11.1 Introduction

The Stack<T> class is a collection of items (of type T) that provides push()
and pop() methods satisfying the last-in-first-out (LIFO) property: the last item
pushed is the first popped. This chapter considers how to implement concurrent
stacks. At first glance, stacks seem to provide little opportunity for concurrency,
because push() and pop() calls seem to need to synchronize at the top of the
stack.
Surprisingly, perhaps, stacks are not inherently sequential. In this chapter, we

show how to implement concurrent stacks that can achieve a high degree of par-
allelism. As a first step, we consider how to build a lock-free stack in which pushes
and pops synchronize at a single location.

11.2 An Unbounded Lock-Free Stack

Fig. 11.1 shows a concurrent LockFreeStack class, whose code appears in
Figs. 11.2, 11.3 and 11.4. The lock-free stack is a linked list, where the top field
points to the first node (or null if the stack is empty.) For simplicity, we usually
assume it is illegal to add a null value to a stack.
A pop() call that tries to remove an item from an empty stack throws an excep-

tion. A push() method creates a new node (Line 13), and then calls tryPush()
to try to swing the top reference from the current top-of-stack to its succes-
sor. If tryPush() succeeds, push() returns, and if not, the tryPush() attempt
is repeated after backing off. The pop() method calls tryPop(), which uses
compareAndSet() to try to remove the first node from the stack. If it succeeds,
it returns the node, otherwise it returns null. (It throws an exception if the stack

The Art of Multiprocessor Programming. DOI: 10.1016/B978-0-12-397337-5.00011-3

Copyright © 2012 by Elsevier Inc. All rights reserved.
245

246 Chapter 11 Concurrent Stacks and Elimination

A:pop()

(b)

ls

top

value value value

A:push()

(a) top

value value

value
a

a

Figure 11.1 A Lock-free stack. In Part (a) a thread pushes value a into the stack by applying
a compareAndSet() to the top field. In Part (b) a thread pops value a from the stack by
applying a compareAndSet() to the top field.

1 public class LockFreeStack<T> {
2 AtomicReference<Node> top = new AtomicReference<Node>(null);
3 static final int MIN_DELAY = ...;
4 static final int MAX_DELAY = ...;
5 Backoff backoff = new Backoff(MIN_DELAY, MAX_DELAY);
6
7 protected boolean tryPush(Node node){
8 Node oldTop = top.get();
9 node.next = oldTop;
10 return(top.compareAndSet(oldTop, node));
11 }
12 public void push(T value) {
13 Node node = new Node(value);
14 while (true) {
15 if (tryPush(node)) {
16 return;
17 } else {
18 backoff.backoff();
19 }
20 }
21 }

Figure 11.2 The LockFreeStack<T> class: in the push() method, threads alternate between
trying to alter the top reference by calling tryPush(), and backing off using the Backoff class
from Fig. 7.5 of Chapter 7.

is empty.) The tryPop() method is called until it succeeds, at which point pop()
returns the value from the removed node.
As we have seen in Chapter 7, one can significantly reduce contention at the

top field using exponential backoff (see Fig. 7.5 of Chapter 7). Accordingly, both

11.2 An Unbounded Lock-Free Stack 247

1 public class Node {
2 public T value;
3 public Node next;
4 public Node(T value) {
5 value = value;
6 next = null;
7 }
8 }

Figure 11.3 Lock-free stack list node.

1 protected Node tryPop() throws EmptyException {
2 Node oldTop = top.get();
3 if (oldTop == null) {
4 throw new EmptyException();
5 }
6 Node newTop = oldTop.next;
7 if (top.compareAndSet(oldTop, newTop)) {
8 return oldTop;
9 } else {
10 return null;
11 }
12 }
13 public T pop() throws EmptyException {
14 while (true) {
15 Node returnNode = tryPop();
16 if (returnNode != null) {
17 return returnNode.value;
18 } else {
19 backoff.backoff();
20 }
21 }
22 }

Figure 11.4 The LockFreeStack<T> class: The pop() method alternates between trying to
change the top field and backing off.

the push() and pop() methods back off after an unsuccessful call to tryPush()
or tryPop().
This implementation is lock-free because a thread fails to complete a push() or

pop() method call only if there were infinitely many successful calls that modified
the top of the stack. The linearization point of both the push() and the pop()
methods is the successful compareAndSet(), or the throwing of the exception,
in Line 3, in case of a pop() on an empty stack. Note that the compareAndSet()
call by pop() does not have an ABA problem (see Chapter 10) because the Java
garbage collector ensures that a node cannot be reused by one thread, as long as
that node is accessible to another thread. Designing a lock-free stack that avoids
the ABA problem without a garbage collector is left as an exercise.

248 Chapter 11 Concurrent Stacks and Elimination

11.3 Elimination

The LockFreeStack implementation scales poorly, not so much because the
stack’s top field is a source of contention, but primarily because it is a sequen-
tial bottleneck: method calls can proceed only one after the other, ordered by
successful compareAndSet() calls applied to the stack’s top field.
Although exponential backoff can significantly reduce contention, it does

nothing to alleviate the sequential bottleneck. To make the stack parallel, we
exploit this simple observation: if a push() is immediately followed by a pop(),
the two operations cancel out, and the stack’s state does not change. It is as if
both operations never happened. If one could somehow cause concurrent pairs
of pushes and pops to cancel, then threads calling push() could exchange val-
ues with threads calling pop(), without ever modifying the stack itself. These two
calls would eliminate one another.
As depicted in Fig. 11.5, threads eliminate one another through an

EliminationArray in which threads pick random array entries to try to meet
complementary calls. Pairs of complementary push() and pop() calls exchange
values and return. A thread whose call cannot be eliminated, either because it has
failed to find a partner, or found a partner with the wrong kind of method call
(such as a push() meeting a push()), can either try again to eliminate at a new
location, or can access the shared LockFreeStack. The combined data structure,
array, and shared stack, is linearizable because the shared stack is linearizable,
and the eliminated calls can be ordered as if they happened at the point in which
they exchanged values.
We can use the EliminationArray as a backoff scheme on a shared

LockFreeStack. Each thread first accesses the LockFreeStack, and if it fails

A :pop()
top

d e fB :push(b)

C :pop()

B : return()

A : return(b)

C : return(d)

Figure 11.5 The EliminationBackoffStack<T> class. Each thread selects a random loca-
tion in the array. If thread A’s pop() and B’s push() calls arrive at the same location at about
the same time, then they exchange values without accessing the shared LockFreeStack.
Thread C that does not meet another thread eventually pops the shared LockFreeStack.

11.4 The Elimination Backoff Stack 249

to complete its call (that is, the compareAndSet() attempt fails), it attempts to
eliminate its call using the array instead of simply backing off. If it fails to elimi-
nate itself, it calls the LockFreeStack again, and so on. We call this structure an
EliminationBackoffStack.

11.4 The Elimination Backoff Stack

Here is how to construct an EliminationBackoffStack, a lock-free linearizable
stack implementation.
We are reminded of a story about two friends who are discussing poli-

tics on election day, each trying, to no avail, to convince the other to switch
sides.
Finally, one says to the other: “Look, it’s clear that we are unalterably opposed

on every political issue. Our votes will surely cancel out. Why not save ourselves
some time and both agree to not vote today?”
The other agrees enthusiastically and they part.
Shortly after that, a friend of the first one who had heard the conversation says,

“That was a sporting offer you made.”
“Not really,” says the second. “This is the third time I’ve done this today.”
The principle behind our construction is the same. We wish to allow threads

with pushes and pops to coordinate and cancel out, but must avoid a situation in
which a thread can make a sporting offer to more than one other thread. We do
so by implementing the EliminationArray using coordination structures called
exchangers, objects that allow exactly two threads (and no more) to rendezvous
and exchange values.
We already saw how to exchange values using locks in the synchronous queue

of Chapter 10. Here, we need a lock-free exchange, one in which threads spin
rather than block, as we expect them to wait only for very short durations.

11.4.1 A Lock-Free Exchanger

A LockFreeExchanger<T> object permits two threads to exchange values of
type T. If thread A calls the object’s exchange() method with argument a, and
B calls the same object’s exchange() method with argument b, then A’s call will
return value b and vice versa. On a high level, the exchanger works by having the
first thread arrive to write its value, and spin until a second arrives. The second
then detects that the first is waiting, reads its value, and signals the exchange.
They each have now read the other’s value, and can return. The first thread’s call
may timeout if the second does not show up, allowing it to proceed and leave the
exchanger, if it is unable to exchange a value within a reasonable duration.

250 Chapter 11 Concurrent Stacks and Elimination

1 public class LockFreeExchanger<T> {
2 static final int EMPTY = ..., WAITING = ..., BUSY = ...;
3 AtomicStampedReference<T> slot = new AtomicStampedReference<T>(null, 0);
4 public T exchange(T myItem, long timeout, TimeUnit unit)
5 throws TimeoutException {
6 long nanos = unit.toNanos(timeout);
7 long timeBound = System.nanoTime() + nanos;
8 int[] stampHolder = {EMPTY};
9 while (true) {

10 if (System.nanoTime() > timeBound)
11 throw new TimeoutException();
12 T yrItem = slot.get(stampHolder);
13 int stamp = stampHolder[0];
14 switch(stamp) {
15 case EMPTY:
16 if (slot.compareAndSet(yrItem, myItem, EMPTY, WAITING)) {
17 while (System.nanoTime() < timeBound){
18 yrItem = slot.get(stampHolder);
19 if (stampHolder[0] == BUSY) {
20 slot.set(null, EMPTY);
21 return yrItem;
22 }
23 }
24 if (slot.compareAndSet(myItem, null, WAITING, EMPTY)) {
25 throw new TimeoutException();
26 } else {
27 yrItem = slot.get(stampHolder);
28 slot.set(null, EMPTY);
29 return yrItem;
30 }
31 }
32 break;
33 case WAITING:
34 if (slot.compareAndSet(yrItem, myItem, WAITING, BUSY))
35 return yrItem;
36 break;
37 case BUSY:
38 break;
39 default: // impossible
40 ...
41 }
42 }
43 }
44 }

Figure 11.6 The LockFreeExchanger<T> Class.

The LockFreeExchanger<T> class appears in Fig. 11.6. It has a single
AtomicStampedReference<T> field,1 slot. The exchanger has three possible
states: EMPTY, BUSY, or WAITING. The reference’s stamp records the exchanger’s
state (Line 14). The exchanger’s main loop continues until the timeout limit

1 See Chapter 10, Pragma 10.6.1.

11.4 The Elimination Backoff Stack 251

passes, when it throws an exception (Line 10). In the meantime, a thread reads
the state of the slot (Line 12) and proceeds as follows:

� If the state is EMPTY, then the thread tries to place its item in the slot and set
the state to WAITING using a compareAndSet() (Line 16). If it fails, then some
other thread succeeds and it retries. If it was successful (Line 17), then its item
is in the slot and the state is WAITING, so it spins, waiting for another thread
to complete the exchange. If another thread shows up, it will take the item in
the slot, replace it with its own, and set the state to BUSY (Line 19), indicat-
ing to the waiting thread that the exchange is complete. The waiting thread
will consume the item and reset the state to EMPTY. Resetting to EMPTY can be
done using a simple write because the waiting thread is the only one that can
change the state from BUSY to EMPTY (Line 20). If no other thread shows up,
the waiting thread needs to reset the state of the slot to EMPTY. This change
requires a compareAndSet() because other threads might be attempting to
exchange by setting the state from WAITING to BUSY (Line 24). If the call is suc-
cessful, it raises a timeout exception. If, however, the call fails, some exchang-
ing thread must have shown up, so the waiting thread completes the exchange
(Line 26).

� If the state is WAITING, then some thread is waiting and the slot contains its
item. The thread takes the item, and tries to replace it with its own by changing
the state from WAITING to BUSY using a compareAndSet() (Line 34). It may
fail if another thread succeeds, or the other thread resets the state to EMPTY
following a timeout. If so, the thread must retry. If it does succeed changing
the state to BUSY, then it can return the item.

� If the state is BUSY then two other threads are currently using the slot for an
exchange and the thread must retry (Line 37).

Notice that the algorithm allows the inserted item to be null, something
used later in the elimination array construction. There is no ABA problem
because the compareAndSet() call that changes the state never inspects the item.
A successful exchange’s linearization point occurs when the second thread to
arrive changes the state from WAITING to BUSY (Line 34). At this point both
exchange() calls overlap, and the exchange is committed to being successful. An
unsuccessful exchange’s linearization point occurs when the timeout exception is
thrown.
The algorithm is lock-free because overlapping exchange() calls with suffi-

cient time to exchange will fail only if other exchanges are repeatedly succeeding.
Clearly, too short an exchange time can cause a thread never to succeed, so care
must be taken when choosing timeout durations.

11.4.2 The Elimination Array

An EliminationArray is implemented as an array of Exchanger objects of
maximal size capacity. A thread attempting to perform an exchange picks an
array entry at random, and calls that entry’s exchange() method, providing

252 Chapter 11 Concurrent Stacks and Elimination

1 public class EliminationArray<T> {
2 private static final int duration = ...;
3 LockFreeExchanger<T>[] exchanger;
4 Random random;
5 public EliminationArray(int capacity) {
6 exchanger = (LockFreeExchanger<T>[]) new LockFreeExchanger[capacity];
7 for (int i = 0; i < capacity; i++) {
8 exchanger[i] = new LockFreeExchanger<T>();
9 }
10 random = new Random();
11 }
12 public T visit(T value, int range) throws TimeoutException {
13 int slot = random.nextInt(range);
14 return (exchanger[slot].exchange(value, duration,
15 TimeUnit.MILLISECONDS));
16 }
17 }

Figure 11.7 The EliminationArray<T> class: in each visit, a thread can choose dynamically
the sub-range of the array from which it will will randomly select a slot.

its own input as an exchange value with another thread. The code for the
EliminationArray appears in Fig. 11.7. The constructor takes as an argu-
ment the capacity of the array (the number of distinct exchangers). The
EliminationArray class provides a single method, visit(), which takes time-
out arguments. (Following the conventions used in the java.util.concurrent pack-
age, a timeout is expressed as a number and a time unit.) The visit() call takes
a value of type T and either returns the value input by its exchange partner,
or throws an exception if the timeout expires without exchanging a value with
another thread. At any point in time, each thread will select a random location in
a subrange of the array (Line 13). This subrange will be determined dynamically
based on the load on the data structure, and will be passed as a parameter to the
visit() method.
The EliminationBackoffStack is a subclass of LockFreeStack that over-

rides the push() and pop() methods, and adds an EliminationArray field.
Figs. 11.8 and 11.9 show the new push() and pop() methods. Upon failure of
a tryPush() or tryPop() attempt, instead of simply backing off, these methods
try to use the EliminationArray to exchange values (Lines 15 and 34). A push()
call calls visit() with its input value as argument, and a pop() call with null as
argument. Both push() and pop() have a thread-local RangePolicy object that
determines the EliminationArray subrange to be used.
When push() calls visit(), it selects a random array entry within its range

and attempts to exchange a value with another thread. If the exchange is suc-
cessful, the pushing thread checks whether the value was exchanged with a pop()
method (Line 18) by testing if the value exchanged was null. (Recall that pop()
always offers null to the exchanger while push() always offers a non-null value.)
Symmetrically, when pop() calls visit(), it attempts an exchange, and if the

11.4 The Elimination Backoff Stack 253

1 public class EliminationBackoffStack<T> extends LockFreeStack<T> {
2 static final int capacity = ...;
3 EliminationArray<T> eliminationArray = new EliminationArray<T>(capacity);
4 static ThreadLocal<RangePolicy> policy = new ThreadLocal<RangePolicy>() {
5 protected synchronized RangePolicy initialValue() {
6 return new RangePolicy();
7 }
8
9 public void push(T value) {
10 RangePolicy rangePolicy = policy.get();
11 Node node = new Node(value);
12 while (true) {
13 if (tryPush(node)) {
14 return;
15 } else try {
16 T otherValue = eliminationArray.visit
17 (value, rangePolicy.getRange());
18 if (otherValue == null) {
19 rangePolicy.recordEliminationSuccess();
20 return; // exchanged with pop
21 }
22 } catch (TimeoutException ex) {
23 rangePolicy.recordEliminationTimeout();
24 }
25 }
26 }
27 }

Figure 11.8 The EliminationBackoffStack<T> class: this push() method overrides the
LockFreeStack push() method. Instead of using a simple Backoff class, it uses an
EliminationArray and a dynamic RangePolicy to select the subrange of the array within
which to eliminate.

28 public T pop() throws EmptyException {
29 RangePolicy rangePolicy = policy.get();
30 while (true) {
31 Node returnNode = tryPop();
32 if (returnNode != null) {
33 return returnNode.value;
34 } else try {
35 T otherValue = eliminationArray.visit(null, rangePolicy.getRange());
36 if (otherValue != null) {
37 rangePolicy.recordEliminationSuccess();
38 return otherValue;
39 }
40 } catch (TimeoutException ex) {
41 rangePolicy.recordEliminationTimeout();
42 }
43 }
44 }

Figure 11.9 The EliminationBackoffStack<T> class: this pop() method overrides the
LockFreeStack push() method.

254 Chapter 11 Concurrent Stacks and Elimination

exchange is successful it checks (Line 36) whether the value was exchanged with
a push() call by checking whether it is not null.
It is possible that the exchange will be unsuccessful, either because no

exchange took place (the call to visit() timed out) or because the exchange
was with the same type of operation (such as a pop() with a pop()). For brevity,
we choose a simple approach to deal with such cases: we retry the tryPush() or
tryPop() calls (Lines 13 and 31).
One important parameter is the range of the EliminationArray from which

a thread selects an Exchanger location. A smaller range will allow a greater
chance of a successful collision when there are few threads, while a larger range
will lower the chances of threads waiting on a busy Exchanger (recall that an
Exchanger can only handle one exchange at a time). Thus, if few threads access
the array, they should choose smaller ranges, and as the number of threads
increase, so should the range. One can control the range dynamically using a
RangePolicy object that records both successful exchanges (as in Line 37) and
timeout failures (Line 40). We ignore exchanges that fail because the operations
do not match (such as push() with push()), because they account for a fixed frac-
tion of the exchanges for any given distribution of push() and pop() calls. One
simple policy is to shrink the range as the number of failures increases and vice
versa.
There are many other possible policies. For example, one can devise a more

elaborate range selection policy, vary the delays on the exchangers dynamically,
add additional backoff delays before accessing the shared stack, and control
whether to access the shared stack or the array dynamically. We leave these as
exercises.
The EliminationBackoffStack is a linearizable stack: any successful push()

or pop() call that completes by accessing the LockFreeStack can be linearized at
the point of its LockFreeStack access. Any pair of eliminated push() and pop()
calls can be linearized when they collide. As noted earlier, the method calls com-
pleted through elimination do not affect the linearizability of those completed
in the LockFreeStack, because they could have taken effect in any state of the
LockFreeStack, and having taken effect, the state of the LockFreeStack would
not have changed.
Because the EliminationArray is effectively used as a backoff scheme, we

expect it to deliver performance comparable to the LockFreeStack at low loads.
Unlike the LockFreeStack, it has the potential to scale. As the load increases, the
number of successful eliminations will grow, allowing many operations to com-
plete in parallel. Moreover, contention at the LockFreeStack is reduced because
eliminated operations never access the stack.

11.5 Chapter Notes

The LockFreeStack is credited to Treiber [145]. Actually it predates Treiber’s
report in 1986. It was probably invented in the early 1970s to motivate the

11.6 Exercises 255

CAS operation on the IBM 370. The EliminationBackoffStack is due to
Danny Hendler, Nir Shavit, and Lena Yerushalmi [57]. An efficient exchanger,
which quite interestingly uses an elimination array, was introduced by Doug Lea,
Michael Scott, and Bill Scherer [136]. A variant of this exchanger appears in the
Java Concurrency Package. The EliminationBackoffStack we present here is
modular, making use of exchangers, but somewhat inefficient. MarkMoir, Daniel
Nussbaum, Ori Shalev, and Nir Shavit present a highly effective implementation
of an EliminationArray [120].

11.6 Exercises

Exercise 126. Design an unbounded lock-based Stack<T> implementation based
on a linked list.

Exercise 127. Design a bounded lock-based Stack<T> using an array.

1. Use a single lock and a bounded array.
2. Try to make your algorithm lock-free. Where do you run into difficulty?

Exercise 128. Modify the unbounded lock-free stack of Section 11.2 to work
in the absence of a garbage collector. Create a thread-local pool of preallo-
cated nodes and recycle them. To avoid the ABA problem, consider using the
AtomicStampedReference<T> class from java.util.concurrent.atomic that encap-
sulates both a reference and an integer stamp.

Exercise 129. Discuss the backoff policies used in our implementation. Does it
make sense to use the same shared Backoff object for both pushes and pops in
our LockFreeStack<T> object? How else could we structure the backoff in space
and time in the EliminationBackoffStack<T>?

Exercise 130. Implement a stack algorithm assuming there is a bound, in any state
of the execution, on the total difference between the number of pushes and pops
to the stack.

Exercise 131. Consider the problem of implementing a bounded stack using an
array indexed by a top counter, initially zero. In the absence of concurrency, these
methods are almost trivial. To push an item, increment top to reserve an array
entry, and then store the item at that index. To pop an item, decrement top, and
return the item at the previous top index.
Clearly, this strategy does not work for concurrent implementations, because

one cannot make atomic changes to multiple memory locations. A single
synchronization operation can either increment or decrement the top counter,
but not both, and there is no way atomically to increment the counter and store
a value.

256 Chapter 11 Concurrent Stacks and Elimination

Nevertheless, Bob D. Hacker decides to solve this problem. He decides to adapt
the dual-data structure approach of Chapter 10 to implement a dual stack. His
DualStack<T> class splits push() and pop() methods into reservation and ful-
fillment steps. Bob’s implementation appears in Fig. 11.10.
The stack’s top is indexed by the top field, an AtomicInteger manipu-

lated only by getAndIncrement() and getAndDecrement() calls. Bob’s push()

1 public class DualStack<T> {
2 private class Slot {
3 boolean full = false;
4 volatile T value = null;
5 }
6 Slot[] stack;
7 int capacity;
8 private AtomicInteger top = new AtomicInteger(0); // array index
9 public DualStack(int myCapacity) {
10 capacity = myCapacity;
11 stack = (Slot[]) new Object[capacity];
12 for (int i = 0; i < capacity; i++) {
13 stack[i] = new Slot();
14 }
15 }
16 public T pop() throws EmptyException {
17 while (true) {
18 int i = top.getAndDecrement();
19 if (i <= 0) { // is stack empty?
20 throw new EmptyException();
21 } else if (i-1 < capacity){
22 while (!stack [i-1].full) {};
23 T value = stack[i-1].value;
24 stack[i-1].full = false;
25 return value ; //pop fulfilled
26 }
27 }
28 }
29 public T pop() throws EmptyException {
30 while (true) {
31 int i = top.getAndDecrement();
32 if (i < 0) { // is stack empty?
33 throw new EmptyException();
34 } else if (i < capacity - 1) {
35 while (!stack[i].full){};
36 T value = stack[i].value;
37 stack[i].full = false;
38 return value; //pop fulfilled
39 }
40 }
41 }
42 }

Figure 11.10 Bob’s problematic dual stack.

11.6 Exercises 257

method’s reservation step reserves a slot by applying getAndIncrement() to top.
Suppose the call returns index i. If i is in the range 0 . . .capacity− 1, the reser-
vation is complete. In the fulfillment phase, push(x) stores x at index i in the
array, and raises the full flag to indicate that the value is ready to be read. The
value field must be volatile to guarantee that once flag is raised, the value
has already been written to index i of the array.
If the index returned from push()’s getAndIncrement() is less than 0,

the push() method repeatedly retries getAndIncrement() until it returns an
index greater than or equal to 0. The index could be less than 0 due to
getAndDecrement() calls of failed pop() calls to an empty stack. Each such failed
getAndDecrement() decrements the top by one more past the 0 array bound.
If the index returned is greater than capacity −1, push() throws an exception
because the stack is full.
The situation is symmetric for pop(). It checks that the index is within the

bounds and removes an item by applying getAndDecrement() to top, returning
index i. If i is in the range 0 . . .capacity− 1, the reservation is complete. For the
fulfillment phase, pop() spins on the full flag of array slot i, until it detects that
the flag is true, indicating that the push() call is successful.
What is wrong with Bob’s algorithm? Is this an inherent problem or can you

think of a way to fix it?

Exercise 132. In Exercise 97 we ask you to implement the Rooms interface, repro-
duced in Fig. 11.11. The Rooms class manages a collection of rooms, indexed
from 0 to m (where m is a known constant). Threads can enter or exit any
room in that range. Each room can hold an arbitrary number of threads simul-
taneously, but only one room can be occupied at a time. The last thread to
leave a room triggers an onEmpty() handler, which runs while all rooms are
empty.
Fig. 11.12 shows an incorrect concurrent stack implementation.

1. Explain why this stack implementation does not work.
2. Fix it by adding calls to a two-room Rooms class: one room for pushing and
one for popping.

1 public interface Rooms {
2 public interface Handler {
3 void onEmpty();
4 }
5 void enter(int i);
6 boolean exit();
7 public void setExitHandler(int i, Rooms.Handler h) ;
8 }

Figure 11.11 The Rooms interface.

258 Chapter 11 Concurrent Stacks and Elimination

1 public class Stack<T> {
2 private AtomicInteger top;
3 private T[] items;
4 public Stack(int capacity) {
5 top = new AtomicInteger();
6 items = (T[]) new Object[capacity];
7 }
8 public void push(T x) throws FullException {
9 int i = top.getAndIncrement();

10 if (i >= items.length) { // stack is full
11 top.getAndDecrement(); // restore state
12 throw new FullException();
13 }
14 items[i] = x;
15 }
16 public T pop() throws EmptyException {
17 int i = top.getAndDecrement() - 1;
18 if (i < 0) { // stack is empty
19 top.getAndIncrement(); // restore state
20 throw new EmptyException();
21 }
22 return items[i];
23 }
24 }

Figure 11.12 Unsynchronized concurrent stack.

Exercise 133. This exercise is a follow-on to Exercise 132. Instead of having the
push() method throw FullException, exploit the push room’s exit handler to
resize the array. Remember that no thread can be in any room when an exit han-
dler is running, so (of course) only one exit handler can run at a time.

12Counting, Sorting, and
Distributed Coordination

12.1 Introduction

This chapter shows how some important problems that seem inherently
sequential can be made highly parallel by “spreading out” coordination tasks
among multiple parties. What does this spreading out buy us?
To answer this question, we need to understand how to measure the perfor-

mance of a concurrent data structure. There are twomeasures that come tomind:
latency, the time it takes an individual method call to complete, and throughput,
the overall rate at which method calls complete. For example, real-time appli-
cations might care more about latency, and databases might care more about
throughput.
In Chapter 11 we saw how to apply distributed coordination to the

EliminationBackoffStack class. Here, we cover several useful patterns for dis-
tributed coordination: combining, counting, diffraction, and sampling. Some
are deterministic, while others use randomization. We also cover two basic struc-
tures underlying these patterns: trees and combinatorial networks. Interestingly,
for some data structures based on distributed coordination, high throughput
does not necessarily mean low latency.

12.2 Shared Counting

We recall from Chapter 10 that a pool is a collection of items that provides put()
and get() methods to insert and remove items (Fig. 10.1). Familiar classes such
as stacks and queues can be viewed as pools that provide additional fairness guar-
antees.
One way to implement a pool is to use coarse-grained locking, perhapsmaking

both put() and get() synchronized methods. The problem, of course, is that
coarse-grained locking is too heavy-handed, because the lock itself creates both a
sequential bottleneck, forcing all method calls to synchronize, as well as a hot spot,

The Art of Multiprocessor Programming. DOI: 10.1016/B978-0-12-397337-5.00012-5

Copyright © 2012 by Elsevier Inc. All rights reserved.
259

260 Chapter 12 Counting, Sorting, and Distributed Coordination

a source of memory contention.We would prefer to have Poolmethod calls work
in parallel, with less synchronization and lower contention.
Let us consider the following alternative. The pool’s items reside in a cyclic

array, where each array entry contains either an item or null. We route threads
through two counters. Threads calling put() increment one counter to choose
an array index into which the new item should be placed. (If that entry is full, the
thread waits until it becomes empty.) Similarly, threads calling get() increment
another counter to choose an array index from which the new item should be
removed. (If that entry is empty, the thread waits until it becomes full.)
This approach replaces one bottleneck: the lock, with two: the counters. Nat-

urally, two bottlenecks are better than one (think about that claim for a second).
We now explore the idea that shared counters need not be bottlenecks, and can
be effectively parallelized. We face two challenges.

1. We must avoid memory contention, where too many threads try to access the
samememory location, stressing the underlying communication network and
cache coherence protocols.

2. We must achieve real parallelism. Is incrementing a counter an inherently
sequential operation, or is it possible for n threads to increment a counter
faster than it takes one thread to increment a counter n times?

We now look at several ways to build highly parallel counters through data struc-
tures that coordinate the distribution of counter indexes.

12.3 Software Combining

Here is a linearizable shared counter class using a pattern called software com-
bining. A CombiningTree is a binary tree of nodes, where each node contains
bookkeeping information. The counter’s value is stored at the root. Each thread
is assigned a leaf, and at most two threads share a leaf, so if there are p physical
processors, then there are p/2 leaves. To increment the counter, a thread starts
at its leaf, and works its way up the tree to the root. If two threads reach a node
at approximately the same time, then they combine their increments by adding
them together. One thread, the active thread, propagates their combined incre-
ments up the tree, while the other, the passive thread, waits for the active thread to
complete their combined work. A thread may be active at one level and become
passive at a higher level.
For example, suppose threads A and B share a leaf node. They start at the

same time, and their increments are combined at their shared leaf. The first one,
say, B, actively continues up to the next level, with the mission of adding 2 to the
counter value, while the second, A, passively waits for B to return from the root
with an acknowledgment that A’s increment has occurred. At the next level in
the tree, B may combine with another thread C , and advance with the renewed
intention of adding 3 to the counter value.

12.3 Software Combining 261

When a thread reaches the root, it adds the sum of its combined increments to
the counter’s current value. The thread then moves back down the tree, notifying
each waiting thread that the increments are now complete.
Combining trees have an inherent disadvantage with respect to locks: each

increment has a higher latency, that is, the time it takes an individual method call
to complete.With a lock, a getAndIncrement() call takesO(1) time, while with a
CombiningTree, it takesO(logp) time. Nevertheless, a CombiningTree is attrac-
tive because it promises far better throughput, that is, the overall rate at which
method calls complete. For example, using a queue lock, p getAndIncrement()
calls complete in O(p) time, at best, while using a CombiningTree, under ideal
conditions where all threads move up the tree together, p getAndIncrement()
calls complete in O(logp) time, an exponential improvement. Of course, the
actual performance is often less than ideal, a subject examined in detail later
on. Still, the CombiningTree class, like other techniques we consider later, is
intended to benefit throughput, not latency.
Combining trees are also attractive because they can be adapted to apply any

commutative function, not just increment, to the value maintained by the tree.

12.3.1 Overview

Although the idea behind a CombiningTree is quite simple, the implementation
is not. To keep the overall (simple) structure from being submerged in (not-so-
simple) detail, we split the data structure into two classes: the CombiningTree
class manages navigation within the tree, moving up and down the tree as
needed, while the Node class manages each visit to a node. As you go through the
algorithm’s description, it might be a good idea to consult Fig. 12.3 that describes
an example CombiningTree execution.
This algorithm uses two kinds of synchronization. Short-term synchronization

is provided by synchronized methods of the Node class. Each method locks the
node for the duration of the call to ensure that it can read–write node fields
without interference from other threads. The algorithm also requires excluding
threads from a node for durations longer than a single method call. Such
long-term synchronization is provided by a Boolean locked field. When this
field is true, no other thread is allowed to access the node.
Every tree node has a combining status, which defines whether the node is in

the early, middle, or late stages of combining concurrent requests.

enum CStatus{FIRST, SECOND, RESULT, IDLE, ROOT};

These values have the following meanings:

� IDLE: This node is not in use.
� FIRST: One active thread has visited this node, and will return to check
whether another passive thread has left a value with which to combine.

� SECOND: A second thread has visited this node and stored a value in the node’s
value field to be combined with the active thread’s value, but the combined
operation is not yet complete.

262 Chapter 12 Counting, Sorting, and Distributed Coordination

� RESULT: Both threads’ operations have been combined and completed, and
the second thread’s result has been stored in the node’s result field.

� ROOT: This value is a special case to indicate that the node is the root, and
must be treated specially.

Fig. 12.1 shows the Node class’s other fields.
To initialize the CombiningTree for p threads, we create a width w � p/2 array

of Node objects. The root is node[0], and for 0 < i < w, the parent of node[i] is
node[(i − 1)/2]. The leaf nodes are the last (w + 1)/2 nodes in the array, where
thread i is assigned to leaf i/2. The root’s initial combining state is ROOT and the
other nodes combining state is IDLE. Fig. 12.2 shows the CombiningTree class
constructor.
The CombiningTree’s getAndIncrement() method, shown in Fig. 12.4, has

four phases. In the precombining phase (Lines 16 through 19), the CombiningTree
class’s getAndIncrement() method moves up the tree applying precombine() to

1 public class Node {
2 enum CStatus{IDLE, FIRST, SECOND, RESULT, ROOT};
3 boolean locked;
4 CStatus cStatus;
5 int firstValue, secondValue;
6 int result;
7 Node parent;
8 public Node() {
9 cStatus = CStatus.ROOT;
10 locked = false;
11 }
12 public Node(Node myParent) {
13 parent = myParent;
14 cStatus = CStatus.IDLE;
15 locked = false;
16 }
17 ...
18 }

Figure 12.1 The Node class: the constructors and fields.

1 public CombiningTree(int width) {
2 Node[] nodes = new Node[width - 1];
3 nodes[0] = new Node();
4 for (int i = 1; i < nodes.length; i++) {
5 nodes[i] = new Node(nodes[(i-1)/2]);
6 }
7 leaf = new Node[(width + 1)/2];
8 for (int i = 0; i < leaf.length; i++) {
9 leaf[i] = nodes[nodes.length - i - 1];
10 }
11 }

Figure 12.2 The CombiningTree class: constructor.

12.3 Software Combining 263

(b)
cstatus

locked
D stops

result

0

R

1

S

0

F

1

S

0

F

0

F

0

I

AB C stops D E

B stops

A stops

3

Threads

(a) result
second
locked

parent
cstatus
first

0

R

0

F

0

I

0

F

0

F

0

I

0

I

AB C D E

3

(c)

0

R

1

S

1

F

0

S

1

F

1

F

0

F

AB combines
with C

C sets
second
releases lock

D E precombining

A waits
for B

D updates result4

111 1

2B sets
second

1

E missed
precombining
waits for D

(d)

0

R

0

S

0

F

1

S

1

F

0

F

0

F

AB C waits
for result

D
returns 3

E

A sets lock
combines
with B

D decends
7

111 1

2

B releases
lock waits
for result

1

D releases
lock and E
continues

1

A updates
result

(e)

0

R

0

S

0

F

0

S

0

F

0

I

0

F

A
returns 4

B
returns 5

C
returns 6

D
returned 3

E

A decends
with value
4

7

111

2

B decends
with value
5

E continues
precombining1

A decends
with value 4

5

6

Figure 12.3 The concurrent traversal of a width 8 combining tree by 5 threads. The structure is initialized with all nodes
unlocked, the root node having the CStatus ROOT and all other nodes having the CStatus IDLE.

264 Chapter 12 Counting, Sorting, and Distributed Coordination

12 public int getAndIncrement() {
13 Stack<Node> stack = new Stack<Node>();
14 Node myLeaf = leaf[ThreadID.get()/2];
15 Node node = myLeaf;
16 // precombining phase
17 while (node.precombine()) {
18 node = node.parent;
19 }
20 Node stop = node;
21 // combining phase
22 node = myLeaf;
23 int combined = 1;
24 while (node != stop) {
25 combined = node.combine(combined);
26 stack.push(node);
27 node = node.parent;
28 }
29 // operation phase
30 int prior = stop.op(combined);
31 // distribution phase
32 while (!stack.empty()) {
33 node = stack.pop();
34 node.distribute(prior);
35 }
36 return prior;
37 }

Figure 12.4 The CombiningTree class: the getAndIncrement() method.

each node. The precombine() method returns a Boolean indicating whether the
thread was the first to arrive at the node. If so, the getAndIncrement() method
continues moving up the tree. The stop variable is set to the last node visited,
which is either the last node at which the thread arrived second, or the root.
For example, Part (a) of Fig. 12.3 shows a precombining phase example. Thread
A, which is fastest, stops at the root, whileB stops in the middle-level node where
it arrived after A, and C stops at the leaf where it arrived after B.
Fig. 12.5 shows the Node’s precombine() method. In Line 20, the thread waits

until the locked field is false. In Line 21, it tests the combining status.

IDLE

The thread sets the node’s status to FIRST to indicate that it will return to look
for a value for combining. If it finds such a value, it proceeds as the active thread,
and the thread that provided that value is passive. The call then returns true,
instructing the thread to move up the tree.

FIRST

An earlier thread has recently visited this node, and will return to look for a
value to combine. The thread instructs the thread to stop moving up the tree (by

12.3 Software Combining 265

19 synchronized boolean precombine() {
20 while (locked) wait();
21 switch (cStatus) {
22 case IDLE:
23 cStatus = CStatus.FIRST;
24 return true;
25 case FIRST:
26 locked = true;
27 cStatus = CStatus.SECOND;
28 return false;
29 case ROOT:
30 return false;
31 default:
32 throw new PanicException("unexpected Node state" + cStatus);
33 }
34 }

Figure 12.5 The Node class: the precombining phase.

returning false), and to start the next phase, computing the value to combine.
Before it returns, the thread places a long-term lock on the node (by setting
locked to true) to prevent the earlier visiting thread from proceeding without
combining with the thread’s value.

ROOT

If the thread has reached the root node, it instructs the thread to start the next
phase.
Line 31 is a default case that is executed only if an unexpected status is encoun-
tered.

Pragma 12.3.1. It is good programming practice always to provide an arm
for every possible enumeration value, even if we know it cannot happen. If
we are wrong, the program is easier to debug, and if we are right, the program
may later be changed even by someone who does not know as much as we
do. Always program defensively.

In the combining phase, (Fig. 12.4, Lines 21–28), the thread revisits the nodes
it visited in the precombining phase, combining its value with values left by other
threads. It stops when it arrives at the node stop where the precombining phase
ended. Later on, we traverse these nodes in reverse order, so as we go we push the
nodes we visit onto a stack.
The Node class’s combine() method, shown in Fig. 12.6, adds any values left

by a recently arrived passive process to the values combined so far. As before, the
thread first waits until the locked field is false. It then sets a long-term lock on
the node, to ensure that late-arriving threads do not expect to combine with it.
If the status is SECOND, it adds the other thread’s value to the accumulated value,
otherwise it returns the value unchanged. In Part (c) of Fig. 12.3, thread A starts

266 Chapter 12 Counting, Sorting, and Distributed Coordination

35 synchronized int combine(int combined) {
36 while (locked) wait();
37 locked = true;
38 firstValue = combined;
39 switch (cStatus) {
40 case FIRST:
41 return firstValue;
42 case SECOND:
43 return firstValue + secondValue;
44 default:
45 throw new PanicException("unexpected Node state " + cStatus);
46 }
47 }

Figure 12.6 The Node class: the combining phase. This method applies addition to
FirstValue and SecondValue, but any other commutative operation would work just as well.

48 synchronized int op(int combined) {
49 switch (cStatus) {
50 case ROOT:
51 int prior = result;
52 result += combined;
53 return prior;
54 case SECOND:
55 secondValue = combined;
56 locked = false;
57 notifyAll(); // wake up waiting threads
58 while (cStatus != CStatus.RESULT) wait();
59 locked = false;
60 notifyAll();
61 cStatus = CStatus.IDLE;
62 return result;
63 default:
64 throw new PanicException("unexpected Node state");
65 }
66 }

Figure 12.7 The Node class: applying the operation.

ascending the tree in the combining phase. It reaches the second level node locked
by thread B and waits. In Part (d), B releases the lock on the second level node,
and A, seeing that the node is in a SECOND combining state, locks the node and
moves to the root with the combined value 3, the sum of the FirstValue and
SecondValue fields written respectively by A and B.
At the start of the operation phase (Lines 29 and 30), the thread has now

combined all method calls from lower-level nodes, and now examines the node
where it stopped at the end of the precombining phase (Fig. 12.7). If the node
is the root, as in Part (d) of Fig. 12.3, then the thread, in this case A, carries
out the combined getAndIncrement() operations: it adds its accumulated value
(3 in the example) to the result and returns the prior value. Otherwise, the
thread unlocks the node, notifies any blocked thread, deposits its value as the

12.3 Software Combining 267

67 synchronized void distribute(int prior) {
68 switch (cStatus) {
69 case FIRST:
70 cStatus = CStatus.IDLE;
71 locked = false;
72 break;
73 case SECOND:
74 result = prior + firstValue;
75 cStatus = CStatus.RESULT;
76 break;
77 default:
78 throw new PanicException("unexpected Node state");
79 }
80 notifyAll();
81 }

Figure 12.8 The Node class: the distribution phase.

SecondValue, and waits for the other thread to return a result after propagating
the combined operations toward the root. For example, this is the sequence of
actions taken by thread B in Parts (c) and (d) of Fig. 12.3.
When the result arrives, A enters the distribution phase, propagating the result

down the tree. In this phase (Lines 31–36), the thread moves down the tree,
releasing locks, and informing passive partners of the values they should report to
their own passive partners, or to the caller (at the lowest level). The distribute
method is shown in Fig. 12.8. If the state of the node is FIRST, no thread com-
bines with the distributing thread, and it can reset the node to its initial state by
releasing the lock and setting the state to IDLE. If, on the other hand, the state
is SECOND, the distributing thread updates the result to be the sum of the prior
value brought from higher up the tree, and the FIRST value. This reflects a situ-
ation in which the active thread at the node managed to perform its increment
before the passive one. The passive thread waiting to get a value reads the result
once the distributing thread sets the status to RESULT. For example, in Part (e)
of Fig. 12.3, the active thread A executes its distribution phase in the middle
level node, setting the result to 5, changing the state to RESULT, and descending
down to the leaf, returning the value 4 as its output. The passive thread B awakes
and sees that the middle-level node’s state has changed, and reads result 5.

12.3.2 An Extended Example

Fig. 12.3 describes the various phases of a CombiningTree execution. There are
five threads labeled A through E. Each node has six fields, as shown in Fig. 12.1.
Initially, all nodes are unlocked and all but the root are in an IDLE combin-
ing state. The counter value in the initial state in Part (a) is 3, the result of an
earlier computation. In Part (a), to perform a getAndIncrement(), threads A
and B start the precombining phase. A ascends the tree, changing the nodes it
visits from IDLE to FIRST, indicating that it will be the active thread in combining
the values up the tree. Thread B is the active thread at its leaf node, but has not

268 Chapter 12 Counting, Sorting, and Distributed Coordination

yet arrived at the second-level node shared with A. In Part (b), B arrives at the
second-level node and stops, changing it from FIRST to SECOND, indicating that
it will collect its combined values and wait here forA to proceed with them to the
root. B locks the node (changing the locked field from false to true), preventing
A from proceeding with the combining phase without B’s combined value. But
B has not combined the values. Before it does so, C starts precombining, arrives
at the leaf node, stops, and changes its state to SECOND. It also locks the node to
prevent B from ascending without its input to the combining phase. Similarly,
D starts precombining and successfully reaches the root node. Neither A nor D
changes the root node state, and in fact it never changes. They simply mark it as
the node where they stopped precombining. In Part (c) A starts up the tree in
the combining phase. It locks the leaf so that any later thread will not be able to
proceed in its precombining phase, and will wait until A completes its combin-
ing and distribution phases. It reaches the second-level node, locked by B, and
waits. In the meantime, C starts combining, but since it stopped at the leaf node,
it executes the op() method on this node, setting SecondValue to 1 and then
releasing the lock. When B starts its combining phase, the leaf node is unlocked
and marked SECOND, so B writes 1 to FirstValue and ascends to the second-
level node with a combined value of 2, the result of adding the FirstValue and
SecondValue fields.
When it reaches the second level node, the one at which it stopped in the

precombining phase, it calls the op() method on this node, setting SecondValue
to 2. A must wait until it releases the lock. Meanwhile, in the right-hand side of
the tree, D executes its combining phase, locking nodes as it ascends. Because
it meets no other threads with which to combine, it reads 3 in the result field
in the root and updates it to 4. Thread E then starts precombining, but is late
in meeting D. It cannot continue precombining as long as D locks the second-
level node. In Part (d), B releases the lock on the second-level node, and A,
seeing that the node is in state SECOND, locks the node and moves to the root
with the combined value 3, the sum of the FirstValue and SecondValue fields
written, respectively, by A and B. A is delayed while D completes updating the
root. Once D is done, A reads 4 in the root’s result field and updates it to 7.
D descends the tree (by popping its local Stack), releasing the locks and return-
ing the value 3 that it originally read in the root’s result field. E now continues
its ascent in the precombining phase. Finally, in Part (e), A executes its distribu-
tion phase. It returns to the middle-level node, setting result to 5, changing the
state to RESULT, and descending to the leaf, returning the value 4 as its output.
B awakens and sees the state of the middle-level node has changed, reads 5 as the
result, and descends to its leaf where it sets the result field to 6 and the state
to RESULT. B then returns 5 as its output. Finally, C awakens and observes that
the leaf node state has changed, reads 6 as the result, which it returns as its
output value. Threads A through D return values 3 to 6 which fit the root’s
result field value of 7. The linearization order of the getAndIncrement()
method calls by the different threads is determined by their order in the tree
during the precombining phase.

12.4 Quiescently Consistent Pools and Counters 269

12.3.3 Performance and Robustness

Like all the algorithms described in this chapter, CombiningTree throughput
depends in complex ways on the characteristics both of the application and of
the underlying architecture. Nevertheless, it is worthwhile to review, in qualita-
tive terms, some experimental results from the literature. Readers interested in
detailed experimental results (mostly for obsolete architectures) may consult the
chapter notes.
As a thought experiment, a CombiningTree should provide high through-

put under ideal circumstances when each thread can combine its increment with
another’s. But it may provide poor throughput under worst-case circumstances,
where many threads arrive late at a locked node, missing the chance to combine,
and are forced to wait for the earlier request to ascend and descend the tree.
In practice, experimental evidence supports this informal analysis. The higher

the contention, the greater the observed rate of combining, and the greater the
observed speed-up.Worse is better. Combining trees are less attractive when con-
currency is low. The combining rate decreases rapidly as the arrival rate of incre-
ment requests is reduced. Throughput is sensitive to the arrival rate of requests.
Because combining increases throughput, and failure to combine does not,

it makes sense for a request arriving at a node to wait for a reasonable dura-
tion for another thread to arrive with a increment with which to combine. Not
surprisingly, it makes sense to wait for a short time when the contention is
low, and longer when contention is high. When contention is sufficiently high,
unbounded waiting works very well.
An algorithm is robust if it performs well in the presence of large fluctuations

in request arrival times. The literature suggests that the CombiningTree algo-
rithm with a fixed waiting time is not robust, because high variance in request
arrival rates seems to reduce the combining rate.

12.4 Quiescently Consistent Pools and Counters

First shalt thou take out the Holy Pin. Then shalt thou count to three, no more,
no less. Three shall be the number thou shalt count, and the number of the count-
ing shall be three. . .. Once the number three, being the third number, be reached,
then lobbest thou thy Holy Hand Grenade of Antioch towards thy foe, who, being
naughty in my sight, shall snuff it.

FromMonty Python and the Holy Grail.

Not all applications require linearizable counting. Indeed, counter-based Pool
implementations require only quiescently consistent1 counting: all that matters
is that the counters produce no duplicates and no omissions. It is enough that

1 See Chapter 3 for a detailed definition of quiescent consistency.

270 Chapter 12 Counting, Sorting, and Distributed Coordination

for every item placed by a put() in an array entry, another thread eventually
executes a get() that accesses that entry, eventually matching put() and get()
calls. (Wrap-aroundmay still cause multiple put() calls or get() calls to compete
for the same array entry.)

12.5 Counting Networks

Students of Tango know that the partners must be tightly coordinated: if they do
not move together, the dance does not work, no matter how skilled the dancers
may be as individuals. In the same way, combining trees must be tightly coordi-
nated: if requests do not arrive together, the algorithm does not work efficiently,
no matter how fast the individual processes.
In this chapter, we consider counting networks, which look less like Tango and

more like a Rave: each participant moves at its own pace, but collectively the
counter delivers a quiescently consistent set of indexes with high throughput.
Let us imagine that we replace the combining tree’s single counter with mul-

tiple counters, each of which distributes a subset of indexes (see Fig. 12.9). We
allocate w counters (in the figure w = 4), each of which distributes a set of unique
indexes modulo w (in the figure, for example, the second counter distributes 2,
6, 10, . . . i · w + 2 for increasing i). The challenge is how to distribute the threads
among the counters so that there are no duplications or omissions, and how to
do so in a distributed and loosely coordinated style.

12.5.1 Networks That Count

A balancer is a simple switch with two input wires and two output wires, called
the top and bottom wires (or sometimes the north and south wires). Tokens arrive
on the balancer’s input wires at arbitrary times, and emerge on their output wires,
at some later time. A balancer can be viewed as a toggle: given a stream of input
tokens, it sends one token to the top output wire, and the next to the bottom,
and so on, effectively balancing the number of tokens between the two wires
(see Fig. 12.10). More precisely, a balancer has two states: up and down. If

w shared
countersn threads

threads
return indexes

...

4

3

2

1 5

6width w
counting
network

i * w 1 4

i * w 1 2

i * w 1 1

Figure 12.9 A quiescently consistent shared counter based on w = 4 counters preceded by a counting net-
work. Threads traverse the counting network to choose which counters to access.

12.5 Counting Networks 271

x0

x1

y0

y1
balancer

Figure 12.10 A balancer. Tokens arrive at arbitrary times on arbitrary input lines and are
redirected to ensure that when all tokens have exited the balancer, there is at most one
more token on the top wire than on the bottom one.

the state is up, the next token exits on the top wire, otherwise it exits on the
bottom wire.
We use x0 and x1 to denote the number of tokens that respectively arrive on a

balancer’s top and bottom input wires, and y0 and y1 to denote the number that
exit on the top and bottom output wires. A balancer never creates tokens: at all
times.

x0 + x1 � y0 + y1.

A balancer is said to be quiescent if every token that arrived on an input wire has
emerged on an output wire:

x0 + x1 = y0 + y1.

A balancing network is constructed by connecting some balancers’ output wires
to other balancers’ input wires. A balancing network of width w has input
wires x0,x1, . . . ,xw−1 (not connected to output wires of balancers), and w output
wires y0,y1, . . . ,yw−1 (similarly unconnected). The balancing network’s depth is
themaximumnumber of balancers one can traverse starting from any input wire.
We consider only balancing networks of finite depth (meaning the wires do not
form a loop). Like balancers, balancing networks do not create tokens:∑

xi �
∑

yi.

(We usually drop indexes from summations when we sum over every element in
a sequence.) A balancing network is quiescent if every token that arrived on an
input wire has emerged on an output wire:∑

xi =
∑

yi.

So far, we have described balancing networks as if they were switches in a net-
work. On a shared-memory multiprocessor, however, a balancing network can
be implemented as an object in memory. Each balancer is an object, whose wires
are references from one balancer to another. Each thread repeatedly traverses the
object, starting on some input wire, and emerging at some output wire, effec-
tively shepherding a token through the network.
Some balancing networks have interesting properties. The network shown in

Fig. 12.11 has four input wires and four output wires. Initially, all balancers are
up. We can check for ourselves that if any number of tokens enter the network, in
any order, on any set of input wires, then they emerge in a regular pattern on the
output wires. Informally, no matter how token arrivals are distributed among the

272 Chapter 12 Counting, Sorting, and Distributed Coordination

35

1 5

2 6

4

3

4

2

6

1

x0

x1

x2

x3

y0

y1

y2

y3
3

4

2

3

2

4

1

4

3

2

1

5

1 5

5

6

6

6

Figure 12.11 A sequential execution of a BITONIC [4] counting network. Each vertical line
represents a balancer, and each balancer’s two input and output wires are the horizontal lines
it connects to at the dots. In this sequential execution, tokens pass through the network, one
completely after the other in the order specified by the numbers on the tokens. We track
every token as it passes through the balancers on the way to an output wire. For example,
token number 3 enters on wire 2, goes down to wire 3, and ends up on wire 2. Notice how
the step property is maintained in every balancer, and also in the network as a whole.

input wires, the output distribution is balanced across the output wires, where
the top output wires are filled first. If the number of tokens n is a multiple of four
(the network width), then the same number of tokens emerges from each wire.
If there is one excess token, it emerges on output wire 0, if there are two, they
emerge on output wires 0 and 1, and so on. In general,
if

n =
∑

xi

then

yi = (n/w) + (i mod w).

We call this property the step property.
Any balancing network that satisfies the step property is called a counting net-

work, because it can easily be adapted to count the number of tokens that have
traversed the network. Counting is done, as we described earlier in Fig. 12.9, by
adding a local counter to each output wire i, so that tokens emerging on that wire
are assigned consecutive numbers i, i + w, . . . , i + (yi − 1)w.
The step property can be defined in a number of ways which we use inter-

changeably.

Lemma 12.5.1. If y0, . . . ,yw−1 is a sequence of nonnegative integers, the following
statements are all equivalent:

1. For any i < j, 0� yi − yj � 1.

2. Either yi = yj for all i, j, or there exists some c such that for any i < c and
j � c, yi − yj = 1.

3. If m =
∑

yi, yi =
⌈
m−i
w

⌉
.

12.5 Counting Networks 273

12.5.2 The Bitonic Counting Network

In this section we describe how to generalize the counting network of Fig. 12.11
to a counting network whose width is any power of 2. We give an inductive con-
struction.
When describing counting networks, we do not care about when tokens arrive,

we care only that when the network is quiescent, the number of tokens exiting on
the output wires satisfies the step property. Define a width w sequence of inputs
or outputs x = x0, . . . ,xw−1 to be a collection of tokens, partitioned into w sub-
sets xi. The xi are the input tokens that arrive or leave on wire i.
We define the width-2k balancing networkMERGER [2k] as follows. It has two

input sequences of width k, x and x′, and a single output sequence y of width
2k. In any quiescent state, if x and x′ both have the step property, then so does
y. The MERGER [2k] network is defined inductively (see Fig. 12.12). When k is
equal to 1, the MERGER [2k] network is a single balancer. For k > 1, we construct
the MERGER [2k] network with input sequences x and x′ from two MERGER [k]
networks and k balancers. Using a MERGER [k] network, we merge the even sub-
sequence x0,x2, . . . ,xk−2 of x with the odd subsequence x′1,x

′
3, . . . ,x

′
k−1 of x

′

(that is, the sequence x0, . . . ,xk−2,x′1, . . . ,x
′
k−1 is the input to the MERGER [k]

network), while with a second MERGER [k] network we merge the odd subse-
quence of x with the even subsequence of x′. We call the outputs of these two
MERGER [k] networks z and z′. The final stage of the network combines z and
z′ by sending each pair of wires zi and z′i into a balancer whose outputs yield y2i
and y2i+1.
The MERGER [2k] network consists of log 2k layers of k balancers each. It

provides the step property for its outputs only when its two input sequences also
have the step property, which we ensure by filtering the inputs through smaller
balancing networks.

x0
x1
x2
x3
x4
x5
x6
x7

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

y0
y1
y2
y3
y4
y5
y6
y7

Merger[4]

Merger[4]

Figure 12.12 On the left-hand side we see the logical structure of a MERGER [8] network,
into which feed two BITONIC [4] networks, as depicted in Fig. 12.11. The gray MERGER [4] net-
work has as inputs the even wires coming out of the top BITONIC [4] network, and the odd
ones from the lower BITONIC [4] network. In the lower MERGER [4] the situation is reversed.
Once the wires exit the two MERGER [4] networks, each pair of identically numbered wires is
combined by a balancer. On the right-hand side we see the physical layout of a MERGER [8] net-
work. The different balancers are color coded to match the logical structure in the left-hand
figure.

274 Chapter 12 Counting, Sorting, and Distributed Coordination

Bitonic[k]

Merger[2k]

Bitonic[k]

Figure 12.13 The recursive structure of a BITONIC [2k] Counting Network. Two BITONIC [k]
counting networks feed into a MERGER [2k] balancing network.

The BITONIC [2k] network is constructed by passing the outputs from two
BITONIC [k] networks into a MERGER [2k] network, where the induction is
grounded in the BITONIC [2] network consisting of a single balancer, as depicted

in Fig. 12.13. This construction gives us a network consisting of
(
log 2k+1

2

)
layers

each consisting of k balancers.

A Software Bitonic Counting Network

So far, we have described counting networks as if they were switches in a net-
work. On a shared-memory multiprocessor however, a balancing network can be
implemented as an object in memory. Each balancer is an object, whose wires
are references from one balancer to another. Each thread repeatedly traverses the
object, starting on some input wire and emerging at some output wire, effectively
shepherding a token through the network. Here, we show how to implement a
BITONIC [2] network as a shared-memory data structure.
The Balancer class (Fig. 12.14) has a single Boolean field: toggle. The syn-

chronized traverse() method complements the toggle field and returns as out-
put wire, either 0 or 1. The Balancer class’s traverse() method does not need
an argument because the wire on which a token exits a balancer does not depend
on the wire on which it enters.
The Merger class (Fig. 12.15) has three fields: the width field must be a power

of 2, half[] is a two-element array of half-width Merger objects (empty if the
network has width 2), and layer[] is an array of width/2 balancers implement-
ing the final network layer.
The class provides a traverse(i) method, where i is the wire on which the

token enters. (For merger networks, unlike balancers, a token’s path depends on
its input wire.) If the token entered on the lower width/2 wires, then it passes
through half[0], otherwise half[1]. No matter which half-width merger net-
work it traverses, a balancer that emerges on wire i is fed to the ith balancer at
layer[i].
The Bitonic class (Fig. 12.16) also has three fields: width is the width

(a power of 2), half[] is a two-element array of half-width Bitonic[] objects,

12.5 Counting Networks 275

1 public class Balancer {
2 boolean toggle = true;
3 public synchronized int traverse() {
4 try {
5 if (toggle) {
6 return 0;
7 } else {
8 return 1;
9 }
10 } finally {
11 toggle = !toggle;
12 }
13 }
14 }

Figure 12.14 The Balancer class: a synchronized implementation.

1 public class Merger {
2 Merger[] half; // two half-width merger networks
3 Balancer[] layer; // final layer
4 final int width;
5 public Merger(int myWidth) {
6 width = myWidth;
7 layer = new Balancer[width / 2];
8 for (int i = 0; i < width / 2; i++) {
9 layer[i] = new Balancer();
10 }
11 if (width > 2) {
12 half = new Merger[]{new Merger(width/2), new Merger(width/2)};
13 }
14 }
15 public int traverse(int input) {
16 int output = 0;
17 if (input < width / 2) {
18 output = half[input % 2].traverse(input / 2);
19 } else {
20 output = half[1 - (input % 2)].traverse(input / 2);
21 return (2 * output) + layer[output].traverse();
22 }
23 }

Figure 12.15 The Merger class.

and merger is a full width Merger network width. If the network has width 2,
the half[] array is uninitialized. Otherwise, each element of half[] is initialized
to a half-width Bitonic[] network.
The class provides a traverse(i) method. If the token entered on the lower

width/2 wires, then it passes through half[0], otherwise half[1]. A token that

276 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public class Bitonic {
2 Bitonic[] half; // two half-width bitonic networks
3 Merger merger; // final merger layer
4 final int width; // network width
5 public Bitonic(int myWidth) {
6 width = myWidth;
7 merger = new Merger(width);
8 if (width > 2) {
9 half = new Bitonic[]{new Bitonic(width/2), new Bitonic(width/2)};
10 }
11 }
12 public int traverse(int input) {
13 int output = 0;
14 if (width > 2) {
15 output = half[input / (width / 2)].traverse(input / 2);
16 }
17 return merger.traverse((input >= (size / 2) ? (size / 2) : 0) + output);
18 }
19 }

Figure 12.16 The Bitonic[] class.

emerges from the half-merger subnetwork on wire i then traverses the final
merger network from input wire i.
Notice that this class uses a simple synchronized Balancer implementation,

but that if the Balancer implementation were lock-free (or wait-free) the net-
work implementation as a whole would be lock-free (or wait-free).

Proof of Correctness

We now show that BITONIC [w] is a counting network. The proof proceeds as
a progression of arguments about the token sequences passing through the net-
work. Before examining the network itself, here are some simple lemmas about
sequences with the step property.

Lemma 12.5.2. If a sequence has the step property, then so do all its subse-
quences.

Lemma 12.5.3. If x0, . . . ,xk−1 has the step property, then its even and odd sub-
sequences satisfy:

k/2−1∑
i=0

x2i =

⌈
k−1∑
i=0

xi/2

⌉
and

k/2−1∑
i=0

x2i+1 =

⌊
k−1∑
i=0

xi/2

⌋
.

Proof: Either x2i = x2i+1 for 0 � i < k/2, or by Lemma 12.5.1, there exists a
unique j such that x2j = x2j+1 + 1 and x2i = x2i+1 for all i �= j, 0 � i < k/2. In
the first case,

∑
x2i =

∑
x2i+1 =

∑
xi/2, and in the second case

∑
x2i =

⌈∑
xi/2

⌉
and

∑
x2i+1 =

⌊∑
xi/2

⌋
. �

12.5 Counting Networks 277

Lemma 12.5.4. Let x0, . . . ,xk−1 and y0, . . . ,yk−1 be arbitrary sequences having
the step property. If

∑
xi =

∑
yi, then xi = yi for all 0� i < k.

Proof: Let m =
∑

xi =
∑

yi. By Lemma 12.5.1, xi = yi =
⌈
m−i
k

⌉
. �

Lemma 12.5.5. Let x0, . . . ,xk−1 and y0, . . . ,yk−1 be arbitrary sequences having
the step property. If

∑
xi =

∑
yi + 1, then there exists a unique j, 0� j < k, such

that xj = yj + 1, and xi = yi for i �= j, 0� i < k.

Proof: Let m =
∑

xi =
∑

yi + 1. By Lemma 12.5.1, xi =
⌈
m−1
k

⌉
and yi =

⌈
m−1−i

k

⌉
.

These two terms agree for all i, 0 � i < k, except for the unique i such that i =
m− 1 (mod k). �

We now show that the MERGER [w] network preserves the step property.

Lemma 12.5.6. If MERGER [2k] is quiescent, and its inputs x0, . . . ,xk−1 and
x′0, . . . ,x

′
k−1 both have the step property, then its outputs y0, . . . ,y2k−1 also have

the step property.

Proof: We argue by induction on logk. It may be worthwhile to consult Fig. 12.17
which shows an example of the proof structure for a MERGER [8] network.

12

10

y

x

13

z11

b

b

b

b

even

odd

od
d

even

Merger[4]

Merger[4]

z ′

x ′

Figure 12.17 The inductive proof that a MERGER [8] network correctly merges two width 4 sequences x
and x’ that have the step property into a single width 8 sequence y that has the step property. The
odd and even width 2 subsequences of x and x’ all have the step property. Moreover, the difference
in the number of tokens between the even sequence from one and the odd sequence from the other
is at most 1 (in this example, 11 and 12 tokens, respectively). It follows from the induction hypothe-
sis that the outputs z and z’ of the two MERGER [4] networks have the step property, with at most 1
extra token in one of them. This extra token must fall on a specific numbered wire (wire 3 in this
case) leading into the same balancer. In this figure, these tokens are darkened. They are passed to the
southern-most balancer, and the extra token is pushed north, ensuring the final output has the step
property.

278 Chapter 12 Counting, Sorting, and Distributed Coordination

If 2k = 2, MERGER [2k] is just a balancer, and its outputs are guaranteed to
have the step property by the definition of a balancer.
If 2k > 2, let z0, . . . ,zk−1 be the outputs of the first MERGER [k] subnetwork

which merges the even subsequence of x with the odd subsequence of x′. Let
z′0, . . . ,z

′
k−1 be the outputs of the second MERGER [k] subnetwork. Since x and

x′ have the step property by assumption, so do their even and odd subsequences
(Lemma 12.5.2), and hence so do z and z′ (induction hypothesis). Furthermore,∑

zi =
⌈∑

xi/2
⌉
+
⌊∑

x′i/2
⌋
and

∑
z′i =

⌊∑
xi/2

⌋
+
⌈∑

x′i/2
⌉
(Lemma 12.5.3).

A straightforward case analysis shows that
∑

zi and
∑

z′i can differ by at most 1.
We claim that 0� yi − yj � 1 for any i < j. If

∑
zi =

∑
z′i, then Lemma 12.5.4

implies that zi = z′i for 0� i < k/2. After the final layer of balancers,

yi − yj = z�i/2� − z�j/2�,

and the result follows because z has the step property.
Similarly, if

∑
zi and

∑
z′i differ by one, Lemma 12.5.5 implies that zi = z′i

for 0 � i < k/2, except for a unique � such that z� and z′� differ by one. Let
max(z� ,z

′
�) = x + 1 and min(z� ,z

′
�) = x for some nonnegative integer x. From

the step property for z and z′ we have, for all i < �, zi = z′i = x+1 and for all i > �
zi = z′i = x. Since z� and z

′
� are joined by a balancer with outputs y2� and y2�+1,

it follows that y2� = x + 1 and y2�+1 = x. Similarly, zi and z
′
i for i �= � are joined

by the same balancer. Thus, for any i < �, y2i = y2i+1 = x + 1 and for any i > �,
y2i = y2i+1 = x. The step property follows by choosing c = 2� + 1 and applying
Lemma 12.5.1. �

The proof of the following theorem is now immediate.

Theorem 12.5.1. In any quiescent state, the outputs of BITONIC [w] have the step
property.

A Periodic Counting Network

In this section, we show that the Bitonic network is not the only counting network
with depth O(log2w). We introduce a new counting network with the remark-
able property that it is periodic, consisting of a sequence of identical subnetworks,
as depicted in Fig. 12.18. We define the network BLOCK [k] as follows. When k is
equal to 2, the BLOCK [k] network consists of a single balancer. The BLOCK [2k]
network for larger k is constructed recursively. We start with two BLOCK [k] net-
worksA and B. Given an input sequence x, the input toA is xA, and the input to
B is xB . Let y be the output sequence for the two subnetworks, where yA is the
output sequence for A and yB the output sequence for B. The final stage of the
network combines each yAi and y

B
i in a single balancer, yielding final outputs z2i

and z2i+1.
Fig. 12.19 describes the recursive construction of a BLOCK [8] network. The

PERIODIC [2k] network consists of logk BLOCK [2k] networks joined so that

12.5 Counting Networks 279

y0
y1
y2
y3
y4
y5
y6
y7

x0
x1
x2
x3
x4
x5
x6
x7

1st Block[8] 2nd Block[8] 3rd Block[8]

Periodic[8]

Figure 12.18 A PERIODIC [8] counting network constructed from 3 identical BLOCK [8]
networks.

Block[4]

Block[4]

x0
x1
x2
x3
x4
x5
x6
x7

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

y0
y1
y2
y3
y4
y5
y6
y7

Figure 12.19 The left-hand side illustrates a BLOCK [8] network, into which feed two
PERIODIC [4] networks. The right-hand illustrates the physical layout of a MERGER [8] network.
The balancers are color-coded to match the logical structure in the left-hand figure.

the ith output wire of one is the ith wire of the next. Fig. 12.18 is a PERIODIC [8]
counting network.2

A Software Periodic Counting Network

Here is how to implement the Periodic network in software. We reuse the
Balancer class in Fig. 12.14. A single layer of a BLOCK [w] network is imple-
mented by the LAYER [w] network (Fig. 12.20). A LAYER [w] network joins input
wires i and w − i− 1 to the same balancer.
In the BLOCK [w] class (Fig. 12.21), after the token emerges from the initial

LAYER [w] network, it passes through one of two half-width BLOCK [w/2] net-
works (called north and south).
The PERIODIC [w] network (Fig. 12.22) is implemented as an array of logw

BLOCK [w] networks. Each token traverses each block in sequence, where the
output wire taken on each block is the input wire for its successor. (The chapter
notes cite the proof that the PERIODIC [w] is a counting network.)

2 While the BLOCK [2k] and MERGER [2k] networks may look the same, they are not: there is no
permutation of wires that yields one from the other.

280 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public class Layer {
2 int width;
3 Balancer[] layer;
4 public Layer(int width) {
5 this.width = width;
6 layer = new Balancer[width];
7 for (int i = 0; i < width / 2; i++) {
8 layer[i] = layer[width-i-1] = new Balancer();
9 }
10 }
11 public int traverse(int input) {
12 int toggle = layer[input].traverse();
13 int hi, lo;
14 if (input < width / 2) {
15 lo = input;
16 hi = width - input - 1;
17 } else {
18 lo = width - input - 1;
19 hi = input;
20 }
21 if (toggle == 0) {
22 return lo;
23 } else {
24 return hi;
25 }
26 }
27 }

Figure 12.20 The Layer network.

12.5.3 Performance and Pipelining

How does counting network throughput vary as a function of the number of
threads and the network width? For a fixed network width, throughput rises
with the number of threads up to a point, and then the network saturates, and
throughput remains constant or declines. To understand these results, let us think
of a counting network as a pipeline.

� If the number of tokens concurrently traversing the network is less than
the number of balancers, then the pipeline is partly empty, and throughput
suffers.

� If the number of concurrent tokens is greater than the number of balancers,
then the pipeline becomes clogged because too many tokens arrive at each
balancer at the same time, resulting in per-balancer contention.

� Throughput is maximized when the number of tokens is roughly equal to the
number of balancers.

If an application needs a counting network, then the best size network to choose
is one that ensures that the number of tokens traversing the balancer at any time
is roughly equal to the number of balancers.

12.5 Counting Networks 281

1 public class Block {
2 Block north;
3 Block south;
4 Layer layer;
5 int width;
6 public Block(int width) {
7 this.width = width;
8 if (width > 2) {
9 north = new Block(width / 2);
10 south = new Block(width / 2);
11 }
12 layer = new Layer(width);
13 }
14 public int traverse(int input) {
15 int wire = layer.traverse(input);
16 if (width > 2) {
17 if (wire < width / 2) {
18 return north.traverse(wire);
19 } else {
20 return (width / 2) + south.traverse(wire - (width / 2));
21 }
22 } else {
23 return wire;
24 }
25 }
26 }

Figure 12.21 The BLOCK [w] network.

1 public class Periodic {
2 Block[] block;
3 public Periodic(int width) {
4 int logSize = 0;
5 int myWidth = width;
6 while (myWidth > 1) {
7 logSize++;
8 myWidth = myWidth / 2;
9 }
10 block = new Block[logSize];
11 for (int i = 0; i < logSize; i++) {
12 block[i] = new Block(width);
13 }
14 }
15 public int traverse(int input) {
16 int wire = input;
17 for (Block b : block) {
18 wire = b.traverse(wire);
19 }
20 return wire;
21 }
22 }

Figure 12.22 The Periodic network.

282 Chapter 12 Counting, Sorting, and Distributed Coordination

12.6 Diffracting Trees

Counting networks provide a high degree of pipelining, so throughput is largely
independent of network depth. Latency, however, does depend on network
depth. Of the counting networks we have seen, the most shallow has depth
Θ(log2w). Can we design a logarithmic-depth counting network? The good news
is yes, such networks exist, but the bad news is that for all known constructions,
the constant factors involved render these constructions impractical.
Here is an alternative approach. Consider a set of balancers with a single input

wire and two output wires, with the top and bottom labeled 0 and 1, respectively.
The TREE [w] network (depicted in Fig. 12.23) is a binary tree structured as fol-
lows. Let w be a power of two, and define TREE [2k] inductively. When k is equal
to 1, TREE [2k] consists of a single balancer with output wires y0 and y1. For
k > 1, construct TREE [2k] from two TREE [k] trees and one additional balancer.
Make the input wire x of the single balancer the root of the tree and connect each
of its output wires to the input wire of a tree of width k. Redesignate output wires
y0,y1, . . . ,yk−1 of the TREE [k] subtree extending from the “0” output wire as the
even output wires y0,y2, . . . ,y2k−2 of the final TREE [2k] network and the wires
y0,y1, . . . ,yk−1 of the TREE [k] subtree extending from the balancer’s “1” output
wire as the odd output wires y1,y3, . . . ,y2k−1 of final TREE [2k] network.
To understand why the TREE [2k] network has the step property in a quiescent

state, let us assume inductively that a quiescent TREE [k] has the step property.
The root balancer passes at most one token more to the TREE [k] subtree on its
“0” (top) wire than on its“1” (bottom) wire. The tokens exiting the top TREE [k]
subtree have a step property differing from that of the bottom subtree at exactly
one wire j among their k output wires. The TREE [2k] outputs are a perfect shuf-
fle of the wires leaving the two subtrees, and it follows that the two step-shaped
token sequences of width k form a new step of width 2k where the possible single

1 1

1

12

2
2

2

3

3

33

b

b

b

b

b

b

b

Figure 12.23 The TREE [8] class: a tree that counts. Notice how the network maintains the
step property.

12.6 Diffracting Trees 283

excess token appears at the higher of the two wires j, that is, the one from the top
TREE [k] tree.
The TREE [w] network may be a counting network, but is it a good counting

network? The good news is that it has shallow depth: while a BITONIC [w] net-
work has depth log2w, the TREE [w] network depth is just logw. The bad news
is contention: every token that enters the network passes through the same root
balancer, causing that balancer to become a bottleneck. In general, the higher the
balancer in the tree, the higher the contention.
We can reduce contention by exploiting a simple observation similar to one

we made about the EliminationBackoffStack of Chapter 11:

If an even number of tokens pass through a balancer, the outputs are evenly bal-
anced on the top and bottom wires, but the balancer’s state remains unchanged.

The basic idea behind diffracting trees is to place a Prism at each balancer, an
out-of-bandmechanism similar to the EliminationArraywhich allowed tokens
(threads) accessing a stack to exchange items. The Prism allows tokens to pair off
at random array locations and agree to diffract in different directions, that is, to
exit on different wires without traversing the balancer’s toggle bit or changing
its state. A token traverses the balancer’s toggle bit only if it is unable to pair off
with another token within a reasonable period of time. If it did not manage to
diffract, the token toggles the bit to determine which way to go. It follows that
we can avoid excessive contention at balancers if the prism can pair off enough
tokens without introducing too much contention.
A Prism is an array of Exchanger<Integer> objects, like the

EliminationArray. An Exchanger<T> object permits two threads to exchange
T values. If thread A calls the object’s exchange() method with argument a, and
B calls the same object’s exchange() method with argument b, then A’s call
returns value b and vice versa. The first thread to arrive is blocked until the sec-
ond arrives. The call includes a timeout argument allowing a thread to proceed if
it is unable to exchange a value within a reasonable duration.
The Prism implementation appears in Fig. 12.24. Before thread A visits the

balancer’s toggle bit, it visits associated Prism. In the Prism, it picks an array
entry at random, and calls that slot’s exchange() method, providing its own
thread ID as an exchange value. If it succeeds in exchanging ids with another
thread, then the lower thread ID exits on wire 0, and the higher on wire 1.
Fig. 12.24 shows a Prism implementation. The constructor takes as an argu-

ment the capacity of the prism (the maximal number of distinct exchangers).
The Prism class provides a single method, visit(), that chooses the random
exchanger entry. The visit() call returns true if the caller should exit on the top
wire, false if the bottom wire, and it throws a TimeoutException if the timeout
expires without exchanging a value. The caller acquires its thread ID (Line 13),
chooses a random entry in the array (Line 14), and tries to exchange its own ID
with its partner’s (Line 15). If it succeeds, it returns a Boolean value, and if it
times out, it rethrows TimeoutException.

284 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public class Prism {
2 private static final int duration = 100;
3 Exchanger<Integer>[] exchanger;
4 Random random;
5 public Prism(int capacity) {
6 exchanger = (Exchanger<Integer>[]) new Exchanger[capacity];
7 for (int i = 0; i < capacity; i++) {
8 exchanger[i] = new Exchanger<Integer>();
9 }
10 random = new Random();
11 }
12 public boolean visit() throws TimeoutException,InterruptedException {
13 int me = ThreadID.get();
14 int slot = random.nextInt(exchanger.length);
15 int other = exchanger[slot].exchange(me,duration,TimeUnit.MILLISECONDS);
16 return (me < other);
17 }
18 }

Figure 12.24 The Prism class.

1 public class DiffractingBalancer {
2 Prism prism;
3 Balancer toggle;
4 public DiffractingBalancer(int capacity) {
5 prism = new Prism(capacity);
6 toggle = new Balancer();
7 }
8 public int traverse() {
9 boolean direction = false;
10 try{
11 if (prism.visit())
12 return 0;
13 else
14 return 1;
15 } catch(TimeoutException ex) {
16 return toggle.traverse();
17 }
18 }
19 }

Figure 12.25 The DiffractingBalancer class: if the caller pairs up with a concurrent caller
through the prism, it does not need to traverse the balancer.

A DiffractingBalancer (Fig. 12.25), like a regular Balancer, provides a
traverse() method whose return value alternates between 0 and 1. This class
has two fields: prism is a Prism, and toggle is a Balancer. When a thread calls
traverse(), it tries to find a partner through the prism. If it succeeds, then the
partners return with distinct values, without creating contention at the toggle

12.6 Diffracting Trees 285

1 public class DiffractingTree {
2 DiffractingBalancer root;
3 DiffractingTree[] child;
4 int size;
5 public DiffractingTree(int mySize) {
6 size = mySize;
7 root = new DiffractingBalancer(size);
8 if (size > 2) {
9 child = new DiffractingTree[]{
10 new DiffractingTree(size/2),
11 new DiffractingTree(size/2)};
12 }
13 }
14 public int traverse() {
15 int half = root.traverse();
16 if (size > 2) {
17 return (2 * (child[half].traverse()) + half);
18 } else {
19 return half;
20 }
21 }
22 }

Figure 12.26 The DiffractingTree class: fields, constructor, and traverse() method.

(Line 11). Otherwise, if the thread is unable to find a partner, it traverses (Line 16)
the toggle (implemented as a balancer).
The DiffractingTree class (Fig. 12.26) has two fields. The child array is

a two-element array of child trees. The root field is a DiffractingBalancer
that alternates between forwarding calls to the left or right subtree. Each
DiffractingBalancer has a capacity, which is actually the capacity of its inter-
nal prism. Initially this capacity is the size of the tree, and the capacity shrinks by
half at each level.
As with the EliminationBackoffStack, DiffractingTree performance

depends on two parameters: prism capacities and timeouts. If the prisms are too
big, threads miss one another, causing excessive contention at the balancer. If the
arrays are too small, then too many threads concurrently access each exchanger
in a prism, resulting in excessive contention at the exchangers. If prism timeouts
are too short, threads miss one another, and if they are too long, threads may be
delayed unnecessarily. There are no hard-and-fast rules for choosing these val-
ues, since the optimal values depend on the load and the characteristics of the
underlying multiprocessor architecture.
Nevertheless, experimental evidence suggests that it is sometimes possible

to choose these values to outperform both the CombiningTree and
CountingNetwork classes. Here are some heuristics that work well in practice.
Because balancers higher in the tree have more contention, we use larger prisms
near the top of the tree, and add the ability to dynamically shrink and grow the

286 Chapter 12 Counting, Sorting, and Distributed Coordination

random range chosen. The best timeout interval choice depends on the load:
if only a few threads are accessing the tree, then time spent waiting is mostly
wasted, while if there are many threads, then time spent waiting pays off. Adap-
tive schemes are promising: lengthen the timeout while threads succeed in pair-
ing off, and shorten it otherwise.

12.7 Parallel Sorting

Sorting is one of the most important computational tasks, dating back to
Hollerith’s Nineteenth-Century sorting machine, through the first electronic
computer systems in the 1940s, and culminating today, when a high fraction
of programs use sorting in some form or another. As most Computer Science
undergraduates learn early on, the choice of sorting algorithm depends crucially
on the number of items being sorted, the numerical properties of their keys, and
whether the items reside in memory or in an external storage device. Parallel
sorting algorithms can be classified in the same way.
We present two classes of sorting algorithms: sorting networks, which typically

work well for small in-memory data sets, and sample sorting algorithms, which
work well for large data sets in external memory. In our presentation, we sacrifice
performance for simplicity. More complex techniques are cited in the chapter
notes.

12.8 Sorting Networks

Inmuch the same way that a counting network is a network of balancers, a sorting
network is a network of comparators.3 A comparator is a computing element with
two input wires and two output wires, called the top and bottom wires. It receives
two numbers on its input wires, and forwards the larger to its top wire and the
smaller to its bottom wire. A comparator, unlike a balancer, is synchronous: it
outputs values only when both inputs have arrived (see Fig. 12.27).

y0 5 max(x0,x1)

y1 5 min(x0,x1)

x0

x1
comparator

Figure 12.27 A comparator.

3 Historically sorting networks predate counting networks by several decades.

12.8 Sorting Networks 287

A comparison network, like a balancing network, is an acyclic network of com-
parators. An input value is placed on each of its w input lines. These values pass
through each layer of comparators synchronously, finally leaving together on the
network output wires.
A comparison network with input values xi and output values yi, i ∈ {0 . . .1},

each on wire i, is a valid sorting network if its output values are the input values
sorted in descending order, that is, yi−1 � yi.
The following classic theorem simplifies the process of proving that a given

network sorts.

Theorem 12.8.1 (0-1-principle). If a sorting network sorts every input sequence
of 0s and 1s, then it sorts any sequence of input values.

12.8.1 Designing a Sorting Network

There is no need to design sorting networks, because we can recycle counting net-
work layouts. A balancing network and a comparison network are isomorphic if
one can be constructed from the other by replacing balancers with comparators,
or vice versa.

Theorem 12.8.2. If a balancing network counts, then its isomorphic comparison
network sorts.

Proof: We construct a mapping from comparison network transitions to isomor-
phic balancing network transitions.
By Theorem 12.8.1, a comparison network which sorts all sequences of 0s and

1s is a sorting network. Take any arbitrary sequence of 0s and 1s as inputs to the
comparison network, and for the balancing network place a token on each 1 input
wire and no token on each 0 input wire. If we run both networks in lock-step, the
balancing network simulates the comparison network.
The proof is by induction on the depth of the network. For level 0 the claim

holds by construction. Assuming it holds for wires of a given level k, let us prove
it holds for level k+1. On every comparator where two 1smeet in the comparison
network, two tokens meet in the balancing network, so one 1 leaves on each wire
in the comparison network on level k + 1, and one token leaves on each wire in
the balancing network on level k +1. On every comparator where two 0s meet in
the comparison network, no tokens meet in the balancing network, so a 0 leaves
on each level k + 1 wire in the comparison network, and no tokens leave in the
balancing network. On every comparator where a 0 and 1meet in the comparison
network, the 1 leaves on the north (upper) wire and the 1 on the south (lower)
wire on level k + 1, while in the balancing network the token leaves on the north
wire, and no token leaves on the south wire.
If the balancing network is a counting network, that is, it has the step property

on its output level wires, then the comparison network must have sorted the
input sequence of 0s and 1s. �

288 Chapter 12 Counting, Sorting, and Distributed Coordination

1

4

3

2

2

4

3

1

4

3

1

2

1

4

2

3

inputs outputs

4

2

1

3

Figure 12.28 The OddEven sorting network.

The converse is false: not all sorting networks are counting networks. We leave it
as an exercise to verify that the OddEven network in Fig. 12.28 is a sorting network
but not a counting network.

Corollary 12.8.1. Comparison networks isomorphic to BITONIC [] and PERI-
ODIC [] networks are sorting networks.

Sorting a set of size w by comparisons requires Ω(w logw) comparisons.
A sorting network with w input wires has at most O(w) comparators in each
level, so its depth can be no smaller than Ω(logw).

Corollary 12.8.2. The depth of any counting network is at least Ω(logw).

A Bitonic Sorting Algorithm

We can represent any width-w sorting network, such as BITONIC [w], as a col-
lection of d layers of w/2 balancers each. We can represent a sorting network
layout as a table, where each entry is a pair that describes which two wires meet
at that balancer at that layer. (E.g., in the BITONIC [4] network of Fig. 12.11,
wires 0 and 1 meet at the first balancer in the first layer, and wires 0 and 3 meet
at the first balancer of the second layer.) Let us assume, for simplicity, that we are
given an unbounded table bitonicTable[i][d][j], where each array entry con-
tains the index of the associated north (0) or south (1) input wire to balancer i at
depth d.
An in-place array-based sorting algorithm takes as input an array of items to

be sorted (here we assume these items have unique integer keys) and returns
the same array with the items sorted by key. Here is how we implement
BitonicSort, an in-place array-based sorting algorithm based on a Bitonic

12.8 Sorting Networks 289

sorting network. Let us assume that we wish to sort an array of 2 · p · s elements,
where p is the number of threads (and typically also the maximal number of
available processors on which the threads run) and p · s is a power of 2. The
network has p · s comparators at every layer.
Each of the p threads emulates the work of s comparators. Unlike counting

networks, which act like uncoordinated raves, sorting networks are synchronous:
all inputs to a comparator must arrive before it can compute the outputs. The
algorithm proceeds in rounds. In each round, a thread performs s comparisons
in a layer of the network, switching the array entries of items if necessary, so that
they are properly ordered. In each network layer, the comparators join different
wires, so no two threads attempt to exchange the items of the same entry, avoid-
ing the need to synchronize operations at any given layer.
To ensure that the comparisons of a given round (layer) are complete before

proceeding to the next one, we use a synchronization construct called a Barrier
(studied in more detail in Chapter 17). A barrier for p threads provides an
await() method, whose call does not return until all p threads have called
await(). The BitonicSort implementation appears in Fig. 12.29. Each thread
proceeds through the layers of the network round by round. In each round, it
awaits the arrival of the other threads (Line 12), ensuring that the items array
contains the prior round’s results. It then emulates the behavior of s balancers
at that layer by comparing the items at the array positions corresponding to the

1 public class BitonicSort {
2 static final int[][][] bitonicTable = ...;
3 static final int width = ...; // counting network width
4 static final int depth = ...; // counting network depth
5 static final int p = ...; // number of threads
6 static final int s = ...; // a power of 2
7 Barrier barrier;
8 ...
9 public <T> void sort(Item<T>[] items) {

10 int i = ThreadID.get();
11 for (int d = 0; d < depth; d++) {
12 barrier.await();
13 for (int j = 0; j < s; j++) {
14 int north = bitonicTable[(i*s)+j][d][0];
15 int south = bitonicTable[(i*s)+j][d][1];
16 if (items[north].key < items[south].key) {
17 Item<T> temp = items[north];
18 items[north] = items[south];
19 items[south] = temp;
20 }
21 }
22 }
23 }

Figure 12.29 The BitonicSort class.

290 Chapter 12 Counting, Sorting, and Distributed Coordination

comparator’s wires, and exchanging them if their keys are out of order (Lines 14
through 19).
The BitonicSort takes O(s log2 p) time for p threads running on p proces-

sors, which, if s is constant, is O(log2 p) time.

12.9 Sample Sorting

The BitonicSort is appropriate for small data sets that reside in memory. For
larger data sets (where n, the number of items, is much larger than p, the number
of threads), especially ones that reside on out-of-memory storage devices, we
need a different approach. Because accessing a data item is expensive, we must
maintain as much locality-of-reference as possible, so having a single thread sort
items sequentially is cost-effective. A parallel sort like BitonicSort, where an
item is accessed by multiple threads, is simply too expensive.
We attempt tominimize the number of threads that access a given item through

randomization.Thisuseof randomnessdiffers fromthat in theDiffractingTree,
where it was used to distributememory accesses.Herewe use randomness to guess
the distribution of items in the data set to be sorted.
Since the data set to be sorted is large, we split it into buckets, throwing into

each bucket the items that have keys within a given range. Each thread then sorts
the items in one of the buckets using a sequential sorting algorithm, and the result
is a sorted set (when viewed in the appropriate bucket order). This algorithm is
a generalization of the well-known quicksort algorithm, but instead of having a
single splitter key to divide the items into two subsets, we have p− 1 splitter keys
that split the input set into p subsets.
The algorithm for n items and p threads involves three phases:

1. Threads choose p− 1 splitter keys to partition the data set into p buckets. The
splitters are published so all threads can read them.

2. Each thread sequentially processes n/p items, moving each item to its bucket,
where the appropriate bucket is determined by performing a binary search
with the item’s key among the splitter keys.

3. Each thread sequentially sorts the items in its bucket.

Barriers between the phases ensure that all threads have completed one phase
before the next starts.
Before we consider Phase one, we look at the second and third phases.
The second phase’s time complexity is (n/p) logp, consisting of reading each

item from memory, disk, or tape, followed by a binary search among p splitters
cached locally, and finally adding the item into the appropriate bucket. The buc-
kets into which the items are moved could be in memory, on disk, or on tape, so
the dominating cost is that of the n/p accesses to the stored data items.

12.10 Distributed Coordination 291

Let b be the number of items in a bucket. The time complexity of the third
phase for a given thread is O(b logb), to sort the items using a sequential version
of, say, quicksort.4 This part has the highest cost because it consists of read–write
phases that access relatively slow memory, such as disk or tape.
The time complexity of the algorithm is dominated by the thread with the

most items in its bucket in the third phase. It is therefore important to choose the
splitters to be as evenly distributed as possible, so each bucket receives approxi-
mately n− p items in the second phase.
The key to choosing good splitters is to have each thread pick a set of sam-

ple splitters that represent its own n − p size data set, and choose the final p − 1
splitters from among all the sample splitter sets of all threads. Each thread selects
uniformly at random s keys from its data set of size n− p. (In practice, it suffices
to choose s to be 32 or 64 keys.) Each thread then participates in running the par-
allel BitonicSort (Fig. 12.29) on the s · p sample keys selected by the p threads.
Finally, each thread reads the p− 1 splitter keys in positions s, 2s, . . . , (p− 1)s in
the sorted set of splitters, and uses these as the splitters in the second phase. This
choice of s samples, and the later choice of the final splitters from the sorted set
of all samples, reduces the effects of an uneven key distribution among the n− p
size data sets accessed by the threads.
For example, a sample sort algorithm could choose to have each thread pick

p− 1 splitters for its second phase from within its own n/p size data set, without
ever communicating with other threads. The problem with this approach is that
if the distribution of the data is uneven, the size of the buckets may differ greatly,
and performance would suffer. For example, if the number of items in the largest
bucket is doubled, so is the worst-case time complexity of sorting algorithm.
The first phase’s complexity is s (a constant) to perform the random sampling,

andO(log2 p) for the parallel Bitonic sort. The overall time complexity of sample
sort with a good splitter set (where every bucket gets O(n/p) of the items) is

O(log2 p) +O((n/p) logp) +O((n/p) log(n/p))

which overall is O((n/p) log(n/p)).

12.10 Distributed Coordination

This chapter covered several distributed coordination patterns. Some, such as
combining trees, sorting networks, and sample sorting, have high parallelism and
low overheads. All these algorithms contain synchronization bottlenecks, that is,
points in the computation where threads must wait to rendezvous with others. In
the combining trees, threads must synchronize to combine, and in sorting, when
threads wait at barriers.

4 If the item’s key size is known and fixed, one could use algorithms like Radixsort.

292 Chapter 12 Counting, Sorting, and Distributed Coordination

In other schemes, such as counting networks and diffracting trees, threads
never wait for one another. (Although we implement balancers using
synchronizedmethods, they could be implemented in a lock-free manner using
compareAndSet().) Here, the distributed structures pass information from one
thread to another, and while a rendezvous could prove advantageous (as in the
Prism array), it is not necessary.
Randomization, which is useful in many places, helps to distribute work

evenly. For diffracting trees, randomization distributes work over multiple mem-
ory locations, reducing the chance that too many threads simultaneously access
the same location. For sample sort, randomization helps distribute work evenly
among buckets, which threads later sort in parallel.
Finally, we saw that pipelining can ensure that some data structures can have

high throughput, even though they have high latency.
Although we focus on shared-memory multiprocessors, it is worth mention-

ing that the distributed algorithms and structures considered in this chapter also
work in message-passing architectures. The message-passing model might be
implemented directly in hardware, as in a network of processors, or it could be
provided on top of a shared-memory architecture through a software layer such
as MPI.
In shared-memory architectures, switches (such as combining tree nodes or

balancers) are naturally implemented as shared-memory counters. In message-
passing architectures, switches are naturally implemented as processor-local
data structures, where wires that link one processor to another also link one
switch to another. When a processor receives a message, it atomically updates
its local data structure and forwards messages to the processors managing other
switches.

12.11 Chapter Notes

The idea behind combining trees is due to Allan Gottlieb, Ralph Grishman, Clyde
Kruskal, Kevin McAuliffe, Larry Rudolph, and Marc Snir [47]. The software
CombiningTree presented here is a adapted from an algorithm by PenChung
Yew, Nian-Feng Tzeng, and Duncan Lawrie [151] with modifications by Maurice
Herlihy, Beng-Hong Lim, and Nir Shavit [65], all based on an original proposal
by James Goodman, Mary Vernon, and Philip Woest [45].
Counting networks were invented by Jim Aspnes, Maurice Herlihy, and Nir

Shavit [16]. Counting networks are related to sorting networks, including the
ground breaking Bitonic network of Kenneth Batcher [18], and the periodic net-
work ofMartin Dowd, Yehoshua Perl, Larry Rudolph, andMike Saks [35].Miklós
Ajtai, János Komlós, and Endre Szemerédi discovered the AKS sorting network,
an O(logw) depth sorting network [8]. (This asymptotic expression hides large
constants which make networks based on AKS impractical.)

12.12 Exercises 293

Mike Klugerman and Greg Plaxton [84, 85] were the first to provide an AKS-
based counting network construction with O(logw) depth. The 0-1 principle for
sorting networks is by Donald Knuth [86]. A similar set of rules for balancing
networks is provided by Costas Busch andMarios Mavronicolas [25]. Diffracting
trees were invented by Nir Shavit and Asaph Zemach [143].
Sample sorting was suggested by John Reif and Leslie Valiant [132] and by

Huang and Chow [73]. The sequential Quicksort algorithm to which all sample
sorting algorithms relate is due to Tony Hoare [70]. There are numerous par-
allel radix sort algorithms in the literature such as the one by Daniel Jiménez-
González, Joseph Larriba-Pey, and Juan Navarro [82] or the one by Shin-Jae Lee
and Minsoo Jeon and Dongseung Kim and Andrew Sohn [101].

Monty Python and the Holy Grail was written by Graham Chapman, John
Cleese, Terry Gilliam, Eric Idle, Terry Jones, and Michael Palin and co-directed
by Terry Gilliam and Terry Jones [27].

12.12 Exercises

Exercise 134. Prove Lemma 12.5.1.

Exercise 135. Implement a trinary CombiningTree, that is, one that allows up to
three threads coming from three subtrees to combine at a given node. Can you
estimate the advantages and disadvantages of such a tree when compared to a
binary combining tree?

Exercise 136. Implement a CombiningTree using Exchanger objects to per-
form the coordination among threads ascending and descending the tree. What
are the possible disadvantages of your construction when compared to the
CombiningTree class presented in Section 12.3?

Exercise 137. Implement the cyclic array based shared pool described in
Section 12.2 using two simple counters and a ReentrantLock per array entry.

Exercise 138. Provide an efficient lock-free implementation of a Balancer.

Exercise 139. (Hard) Provide an efficient wait-free implementation of a Balancer
(i.e. not by using the universal construction).

Exercise 140. Prove that the TREE [2k] balancing network constructed in Sec-
tion 12.6 is a counting network, that is, that in any quiescent state, the sequences
of tokens on its output wires have the step property.

294 Chapter 12 Counting, Sorting, and Distributed Coordination

Exercise 141. Let B be a width-w balancing network of depth d in a quiescent
state s. Let n = 2d. Prove that if n tokens enter the network on the same wire, pass
through the network, and exit, then B will have the same state after the tokens
exit as it did before they entered.
In the following exercises, a k-smooth sequence is a sequence y0, ...,yw−1 that

satisfies

if i < j then |yi − yj| � k.

Exercise 142. Let X and Y be k-smooth sequences of length w. A matching layer
of balancers for X and Y is one where each element of X is joined by a balancer
to an element of Y in a one-to-one correspondence.
Prove that if X and Y are each k-smooth, and Z is the result of matching X

and Y , then Z is (k + 1)-smooth.

Exercise 143. Consider a BLOCK [k] network in which each balancer has been
initialized to an arbitrary state (either up or down). Show that no matter what
the input distribution is, the output distribution is (logk)-smooth.
Hint: you may use the claim in Exercise 142.

Exercise 144. A smoothing network is a balancing network that ensures that in any
quiescent state, the output sequence is 1-smooth.
Counting networks are smoothing networks, but not vice versa.
A Boolean sorting network is one in which all inputs are guaranteed to be

Boolean. Define a pseudo-sorting balancing network to be a balancing network
with a layout isomorphic to a Boolean sorting network.
LetN be the balancing network constructed by taking a smoothing network

S of width w, a pseudo-sorting balancing network P also of width w, and joining
the ith output wire of S to the ith input wire of P .
Show thatN is a counting network.

Exercise 145. A 3-balancer is a balancer with three input lines and three output
lines. Like its 2-line relative, its output sequences have the step property in any
quiescent state. Construct a depth-3 counting network with 6 input and output
lines from 2-balancers and 3-balancers. Explain why it works.

Exercise 146. Suggest ways to modify the BitonicSort class so that it will sort an
input array of width w where w is not a power of 2.

Exercise 147. Consider the following w-thread counting algorithm. Each thread
first uses a bitonic counting network of width w to take a counter value v. It then
goes through a waiting filter, in which each thread waits for threads with lesser
values to catch up.

12.12 Exercises 295

The waiting filter is an array filter[] of w Boolean values. Define the phase
function

φ(v) = �(v/w)� mod 2.

A thread that exits with value v spins on filter[(v − 1) mod n] until that value
is set to φ(v − 1). The thread responds by setting filter[v mod w] to φ(v), and
then returns v.

1. Explain why this counter implementation is linearizable.
2. An exercise here shows that any linearizable counting network has depth at
least w. Explain why the filter[] construction does not contradict this claim.

3. On a bus-based multiprocessor, would this filter[] construction have better
throughput than a single variable protected by a spin lock? Explain.

Exercise 148. If a sequenceX = x0, . . . xw−1 is k-smooth, then the result of passing
X through a balancing network is k-smooth.

Exercise 149. Prove that the Bitonic[w] network has depth (logw)(1 + logw)/2
and uses (w logw)(1 + logw)/4 balancers.

Exercise 150. (Hard) Provide an implementation of a DiffractingBalancer
that is lock-free.

Exercise 151. Add an adaptive timeout mechanism to the Prism of the
DiffractingBalancer.

Exercise 152. Show that the OddEven network in Fig. 12.28 is a sorting network
but not a counting network.

Exercise 153. Can counting networks do anything besides increments? Consider
a new kind of token, called an antitoken, which we use for decrements. Recall
that when a token visits a balancer, it executes a getAndComplement(): it atomi-
cally reads the toggle value and complements it, and then departs on the output
wire indicated by the old toggle value. Instead, an antitoken complements the
toggle value, and then departs on the output wire indicated by the new toggle
value. Informally, an antitoken “cancels” the effect of the most recent token on
the balancer’s toggle state, and vice versa.
Instead of simply balancing the number of tokens that emerge on each wire,

we assign a weight of +1 to each token and −1 to each antitoken. We generalize
the step property to require that the sums of the weights of the tokens and anti-
tokens that emerge on each wire have the step property. We call this property the
weighted step property.

296 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public synchronized int antiTraverse() {
2 try {
3 if (toggle) {
4 return 1;
5 } else {
6 return 0;
7 }
8 } finally {
9 toggle = !toggle;
10 }
11 }

Figure 12.30 The antiTraverse() method.

Fig. 12.30 shows how to implement an antiTraverse() method that moves
an antitoken though a balancer. Adding an antiTraverse() method to the other
networks is left as an exercise.
Let B be a width-w balancing network of depth d in a quiescent state s. Let

n = 2d. Show that if n tokens enter the network on the same wire, pass through
the network, and exit, then B will have the same state after the tokens exit as it
did before they entered.

Exercise 154. Let B be a balancing network in a quiescent state s, and suppose a
token enters on wire i and passes through the network, leaving the network in
state s′. Show that if an antitoken now enters on wire i and passes through the
network, then the network goes back to state s.

Exercise 155. Show that if balancing network B is a counting network for tokens
alone, then it is also a balancing network for tokens and antitokens.

Exercise 156. A switching network is a directed graph, where edges are called wires
and node are called switches. Each thread shepherds a token through the network.
Switches and tokens are allowed to have internal states. A token arrives at a switch
via an input wire. In one atomic step, the switch absorbs the token, changes its
state and possibly the token’s state, and emits the token on an output wire. Here,
for simplicity, switches have two input and output wires. Note that switching
networks are more powerful than balancing networks, since switches can have
arbitrary state (instead of a single bit) and tokens also have state.
An adding network is a switching network that allows threads to add (or sub-

tract) arbitrary values.
We say that a token is in front of a switch if it is on one of the switch’s input

wires. Start with the network in a quiescent state q0, where the next token to
run will take value 0. Imagine we have one token t of weight a and n–1 tokens
t1, . . . , tn−1 all of weight b, where b > a, each on a distinct input wire. Denote by
S the set of switches that t traverses if it traverses the network by starting in q0.

12.12 Exercises 297

Prove that if we run the t1, . . . , tn−1 one at a time though the network, we can
halt each ti in front of a switch of S .
At the end of this construction, n − 1 tokens are in front of switches of S .

Since switches have two input wires, it follows that t’s path through the network
encompasses at least n − 1 switches, so any adding network must have depth at
least n − 1, where n is the maximum number of concurrent tokens. This bound
is discouraging because it implies that the size of the network depends on the
number of threads (also true for CombiningTrees, but not counting networks),
and that the network has inherently high latency.

Exercise 157. Extend the proof of Exercise 156 to show that a linearizable count-
ing network has depth at least n.

