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Abstract Tuned Mass Dampers (TMDs) are a well-accepted control device widely used by the civil
engineering community. Themain purpose of this study is the robust multi-objective optimization design
of this device using Genetic Algorithms (GAs) to control the structural vibrations against earthquakes.
To enhance the performance of the TMD system, its parameters, including mass, stiffness, and damping
ratio, have been optimally designed using multi-objective genetic algorithms. For doing this, three non-
commensurable objective functions, namely: maximum displacement, maximum velocity, andmaximum
acceleration of each floor, are considered, which are to be minimized simultaneously. For this purpose, a
fast and elitist Non-dominated SortingGenetic Algorithm (NSGA-II) approach is used to find a set of Pareto-
optimal solutions.Moreover, in order to take into account the uncertainties existing in the system, a robust
design optimization procedure is performed using the Hammersley sequence sampling approach. In this
study, the example building is modeled as a 3-D frame, and its responses are evaluated using coupled
multi-mode analysis. From the numerical results of the study, it is found that the robust TMD system is
capable of providing a reduction of about 28% on maximum displacement of the building.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

During past decades, reduction of the undesired vibrations
of structures due to environmental dynamic hazards such as
earthquakes was a meaningful and challenging task for struc-
tural engineers. Various strategies and theories have been de-
veloped to approach this goal over the years. Use of control
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systems is one of these strategies to enhance structural perfor-
mance against vibration excitations [1–4]. The main purpose
of control systems is to reduce structural responses, such as
displacement, velocity and acceleration. Control systems are
divided into four groups of passive, semi active, active, and hy-
brid systems, based on the rate of energy consumption and their
kind of installation in the main structure [5]. The passive sys-
tems dissipate vibration excitations without using any energy
source. Therefore, as these systems add no energy to the struc-
ture, they are not able to make the structure unstable. Another
advantage of these systems is the low cost of repair and main-
tenance. In this study, the robust multi-objective optimization
design of a Tuned Mass Damper (TMD) control device is inves-
tigated as a passive control system. The TMD system is a well-
accepted device for controlling flexible structures, particularly,
tall buildings [6]. Although the TMD control systemmay be con-
sidered a hybrid of a tuned dynamic absorber, including a mass
block and a spring combined with a viscous damper, in the en-
gineering community, it is known as a passive control system
[7,8]. The theory of TMDwas used for the first time by Frahm in
1909 [9]. A typical kind of TMD system consists of a mass block,
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a fluid viscous damper and a spring connected to themain struc-
ture on one of its degrees of freedom. The natural frequency of
the TMD is tuned to the resonant frequency of the main struc-
ture, so, a large amount of entrance energy is transferred to the
TMD [10,11]. The performance of the TMD is based on the op-
timal robust design of its parameters, namely, mass, stiffness,
and damping ratio, and the location of this system on the main
structure. The TMDs are undoubtedly reliable and simple, and
they do not require an external power source, so, the cost of
their construction is low [12]. The design of the TMD system,
which is related to the special condition of the vibration and fre-
quency of a structure, can cause incompatibility with possible
changes in specifications of the structure or loading conditions.
These problems led to the use of active and semi-active systems,
which are more compatible with changes in conditions.

Different classical and robust control algorithms have been
proposed to reduce high rise buildings responses [13–15], the
most common being LQR, LQG, clipped control, sliding mode
control, pole assignment, H2,H∞ control, fuzzy logic control,
and so on [5,16–19]. Most control design methods are based
on optimization techniques of maximizing the performance
of systems through minimizing structural response quantities
[11,20–23].

In the present study, the parameters of the TMD will be op-
timally designed using multi-objective genetic algorithms for
a 12-story realistic building through both deterministic and
robust design procedures. There are trade-offs between some
objective functions throughoptimal design of this device, there-
fore, it is not possible to choose an appropriate optimum design
reflecting the compromise of the designer’s choice concerning
the absolute values of the objective functions. Consequently,
this problem can be formulated as a Multi-objective Optimiza-
tion Problem (MOP). Three non-commensurable objective func-
tions, namely,maximumdisplacement,maximumvelocity, and
maximum acceleration of each floor, are considered, which are
to be minimized simultaneously.

Moreover, in the optimal design procedure of a system, it
is required that the uncertainties which may exist in the sys-
tem are to be taken into account. This consideration can be
performed through a Robust Design Optimization (RDO) pro-
cedure. This method is based on a non-deterministic optimiza-
tion approach, throughwhich probabilistic uncertainties can be
considered for uncertain parameters, and the stochastic optimal
design process can be performed for the system. The Hammers-
ley Sequence Sampling (HSS)method,which is a direct and sim-
ple numerical method, is used in the present study to perform
the RDO procedure. Finally, the robust optimal values of the
TMD parameters are evaluated for the sample building struc-
ture.

2. Mathematical modeling of the building

For an n-story building structure with a TMD system
installed on its top floor, subjected to earthquake horizontal
acceleration components, as shown in Figure 1, the equations
of motion can be given as [6]:

[M]{ü(t)} + [C]{u̇(t)} + [K ]{u(t)}
= −[M] [R] {üg(t)} + {l}(cdu̇rd + kdurd), (1)

mdürd(t) + cdu̇rd(t) + kdurd(t)

= −md{l}T {ü(t)} − md{ügx(t)}, (2)

where [M], [C], and [K ] are the 3n × 3n mass, damping, and
stiffness matrices of the main structure, respectively; n is the
Figure 1: Example of realistic building model and the TMDmounted on its top
floor.

number of stories; and {u(t)} is the 3n× 1 displacement vector
of the building, with respect to the ground, expressed as:

{u(t)} =


{ux(t)}
{uy(t)}
{uθ (t)}


, (3)

where {ux(t)}, {uy(t)} and {uθ (t)} are the n × 1 displacement
vectors of the building in x, y, and θ directions, respectively;
urd(t) is the relative displacement of the TMD, with respect to
the top floor;md, kd, and cd are themass, stiffness, and damping
of the TMD; and [R] is the 3n × 3 influence matrix, given in the
following:

[R] =


{1} {0} {0}
{0} {1} {0}
{0} {0} {1}


, {1}n×1 = {1, 1, . . . , 1}T ,

{0}n×1 = {0, 0, . . . , 0}T .

(4)

{l} is the 3n×1 location vector of the control device; and {üg(t)}
shows the acceleration of the earthquake acting on the base of
the main structure, which can be expressed as:


üg(t)


=

ügx(t)
ügy(t)
ügθ (t)


, (5)

where ügx(t) and ügy(t) are the horizontal components of the
earthquake accelerations in x and y directions, and ügθ (t) is that
of the torsional component. It is noted that in this study, the
control device is considered only in a x direction.

The simplest procedure to define the mass properties of
the building is to assume that the entire mass of each floor
is concentrated at the mass center of the floor (rigid floor
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assumption). Therefore, the mass matrix of the building will be
a lumped matrix, given in the following [24]:

[M] =


m1 · · · 0 0
... m2 0

0
. . .

...
0 0 · · · m3n

 , (6)

where mi is the ith story mass or mass moment of inertia. The
damping matrix of the building is also considered to be a linear
combination of mass and stiffness matrices, called Rayleigh
damping, given as below [25]:

[C] = a0[M] + b0[K ], (7)

a0 = 2ξi
ωiωj

ωi + ωj
, b0 = 2ξj

1
ωi + ωj

, (8)

in which a0 and b0 are the proportional coefficients; ωi and
ωj are the structural modal frequencies of modes i and j,
respectively; and ξi and ξj are the structural damping ratios
for modes i and j, generally assumed to be the same, which
means: ξi = ξj = ξ . It should be noted that these two
modes should be selected such that all modes can contribute
significantly to the final responses of the building. Therefore,
it is recommended [26] that mode i is to be taken as the
fundamental mode of the building, and mode j is to be set to
the middle mode of the building.

The response of the building depends on its mode shapes
and natural frequencies and can be estimated by considering
the dominant modes of the building. Therefore, in this study, to
obtain the building’s uncontrolled responses, a classical modal
analysis is performed. According to [27], the first vibrational
mode is dominant in earthquake excitation ifmodal frequencies
are well-separated. In this study, the first three frequencies of
the sample building are very close. Thus, in order to reduce
the analysis time of the optimization procedure using a genetic
algorithm, the first three modes of the main structure in each
direction are considered in the modal analysis of the building.
Consequently, the displacement vector of the building can be
expressed as:

{u(t)} = [Φ]{q(t)}, (9)

[Φ] =

{φ}1 {φ}2 {φ}3


, {q(t)} =

q1(t)
q2(t)
q3(t)


, (10)

where {φ}i is the ith mode shape of the building, and qi(t)
is the ith generalized modal coordinate of the structure.
Therefore, the equation of motion of the building, considering
the contribution of its first three modes, can be written as
follows:

[
⌢
M]{q̈(t)} + [

⌢
C ]{q̇(t)} + [

⌢
K ]{q(t)}

= −[L]{üg(t)} + [Φ]
T
{l}(cdu̇rd + kdurd), (11)

in which,

[
⌢
M] = [Φ]

T
[M] [Φ], [

⌢
C ] = [Φ]

T
[C] [Φ],

[
⌢
K ] = [Φ]

T
[K ] [Φ], [L] = [Φ]

T
[M] [R]. (12)

Now, by selecting the generalized modal coordinates, {q(t)},
urd(t), and their time derivatives as the state variables, the state
equation of the system (both Eqs. (2) and (11)) can be expressed
in the standard state-space form, as follows [28]:

{Ż(t)} = [A]{Z(t)} + [D]{üg(t)}, (13)
in which [A] is the systemmatrix; [D] is the disturbancematrix;
and {Z(t)} is the state vector, given in the following:

[A] =


[0]P×P [I]P×P

−[M̄]
−1

[K̄ ] −[M̄]
−1

[C̄]


2P×2P

, (14)

where:

[M̄] =


M̂1,1 0 0 0
0 M̂2,2 0 0
0 0 M̂3,3 0

mdφ12,1 mdφ12,2 mdφ12,3 md

 ,

[C̄] =


Ĉ1,1 Ĉ1,2 Ĉ1,3 −


φ12,1


cd

Ĉ2,1 Ĉ2,2 Ĉ2,3 −

φ12,2


cd

Ĉ3,1 Ĉ3,2 Ĉ3,3 −

φ12,3


cd

0 0 0 cd



K̄


=


K̂1,1 K̂1,2 K̂1,3 −


φ12,1


kd

K̂2,1 K̂2,2 K̂2,3 −

φ12,2


kd

K̂3,1 K̂3,2 K̂3,3 −

φ12,3


kd

0 0 0 kd

 ,

(15)

[D] =


[0]P×(P−1)

[D̂]


,

[D̂] = −[M̄]
−1

L1,1 L1,2 L1,3
L2,1 L2,2 L2,3
L3,1 L3,2 L3,3
md 0 0

 ,

(16)

{Z(t)} = [q1 q2 q3 urd q̇1 q̇2 q̇3 u̇rd]T , (17)

where P is the half number of state variables, which is four in
this study. In order to optimally design the parameters of TMD,
its mass,md, is assumed as part of the total mass of the building
(mt

Building), expressed as:

md = m0 × mt
Building, (18)

inwhichm0 is called themass ratio of the TMD system. Asmen-
tioned earlier, in this research study, the TMD control device is
considered to be installed on the top story of the building, and
moves only in an x direction. Therefore, application of TMD can
absorb the entrance energy only in this direction. For designing
the TMD system, its frequency should be tuned close to the fun-
damental frequency of the building in an x direction, where the
control device is installed. Therefore, the frequency of the TMD,
ωd, is expressed as:

ωd = (β × ω1x), (19)

where β is the frequency ratio of the TMD, and ω1x is the fun-
damental frequency of the building in an x direction. Then, the
damping coefficient of the TMD, cd, can be expressed as:

cd = 2 × ξd ×


(md × kd). (20)

Therefore, parametersm0, β and ξd are considered as the design
variables in the multi-objective optimization procedure using
genetic algorithms.

3. Genetic algorithms and multi-objective optimization

Most engineering optimization problems are often very
complex and difficult to solve using traditional optimization
methods, and do not consider many simplifications. Traditional
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optimization methods that are gradient based have many dis-
advantages. In recent years, use of evolutionary algorithms has
been considered by many researchers in different optimiza-
tion fields. The genetic algorithm was first proposed by Hol-
land in 1975 [29]. Genetic Algorithms (GAs) are effective search
methods in a very wide space that eventually lead to orien-
tation towards finding an optimal solution. They can be used
for solving a variety of optimization problems that are not well
suited for standard optimization algorithms, including prob-
lems in which the objective function is discontinuous, non-
differentiable, stochastic or highly nonlinear [30]. There are
many differences between genetic algorithms and the tradi-
tional optimization methods; namely: GAs work with a pop-
ulation or set of points in a certain moment, while traditional
optimization methods use a special point. This means that the
GAs are processed a large number of schemes at one time. Un-
like conventional optimization methods that use derivatives of
functions, genetic algorithms just use objective function values.
In these algorithms, the design space should be converted to the
genetic space. Therefore, genetic algorithms work with a series
of coded variables. The advantage of working with coded vari-
ables is that the codes have a basic capability to convert contin-
uous space to discrete space. Another interesting point is that
the principles of GAs are based on random processing, so the
random operators investigate the search space comparatively.
The main operational steps of genetic algorithms are: initial-
ization, selection of chromosomes for reproduction, crossover
between the chromosomes and producing the next generation,
mutation for searching the other parts of the problem (to pre-
vent early convergence), and insertion of children in the new
population.

In recent years, the application of genetic algorithms has
increased by specifying more and more capability, flexibility
and speed. The main purpose in single-objective optimization
problems is to find the values of design variables, in order
to find the optimum value of a single objective function.
In multi-objective optimization (which is also called vector
optimization), the problem is to optimize more than one
objective function, which are usually in conflict with each other
in engineering optimization problems, so that the improvement
of one leads to a worsening of the others. Therefore, multi-
objective optimization offers an optimal set of solutions, rather
than one optimal value. In this set of optimal solutions, no
answer can be found which dominates the others. The optimal
solutions are called Pareto points or the Pareto Front. In this
set of optimal solutions, which one should be chosen is the
most important question. This is not easy to answer. It involves
much high-level information, which is often non-technical
and experience-driven. However, if a set of many trade-off
(conflicting scenarios) solutions is already available, then one
can evaluate the pros and cons of each of these solutions based
on all such non-technical and qualitative, yet still important,
considerations, and compare them to make a choice. Thus, in
a multi-objective optimization, ideally, an effort must be made
to find the set of trade-off optimal solutions by considering
all objectives to be important [31]. A routine method for
solving multi-objective optimization problems is conversion of
the multiple objective functions into one objective function.
For this purpose, different methods are presented in scientific
reports, from which the most widely used methods are:
The weighted sum approach, ε-perturbation, Min–Max and
the non-sorting genetic algorithm [24]. Genetic algorithms
act well to solve multi-objective optimization problems, and
recently, Srinivas and Deb [32] found a new algorithm based
on genetic algorithms for solving them. This method, called
the non-dominated sorting genetic algorithm, or NSGA, is
more powerful than previous algorithms in multi-objective
optimization. Over the years, the main criticisms of the NSGA
approach have been as follows [33]:

1. High computational complexity of non-dominated sorting:
This method has a computational complexity of O(mn3),
whereM is the number of objectives andN is the population
size. This makes NSGA computationally expensive for large
population sizes.

2. Lack of elitism: The research results [34,35] show that
elitism can significantly speed up the performance of the GA,
which also can help in preventing the loss of good solutions
once they are found.

3. Need for specifying the sharing parameter σshare: Traditional
mechanisms of ensuring diversity in a population so as to
get a wide variety of equivalent solutions have relied mostly
on the concept of sharing. The main problem with sharing
is that it requires the specification of a sharing parameter
(σshare).

Because of the above difficulties of this method in solving
optimization problems, the modified algorithm, called NSGA-
II, was introduced by Deb a few years later, which acts better
and faster to find non-dominated sorting solutions [33]. In
multi-objective optimization, itwas endeavored to find a design
vector, {X∗

} = {X∗

1 , X∗

2 , . . . , X∗
n }

T , which could optimize
k objective functions, Ji, under m inequality and p equality
constraints. Consequently, the multi-objective optimization
can be briefly expressed as:

find {X∗
}, optimize { J(X)},

subject to

gi(X) ≤ 0 (i = 1, 2, . . . ,m)
hj(X) = 0 (j = 1, 2, . . . , p)

(21)

where {X∗
} ∈ ℜ

n is the design variable vector; { J(X)} =

{ J1(X), J2(X), . . . , Jk(X)}T is the vector of the objective func-
tions, so that {J(X)} ∈ ℜ

k; and gi(X) and hj(X) are inequality
and equality constraints, respectively.

In the present study, the multi-objective optimization is
solved utilizing a computer program developed in MATLAB
software. For a multi-objective GA optimizer, the following
parameters, based on the authors’ experiences, are chosen:

Probability of crossover, Pc = 0.25, and Probability of muta-
tion, Pm = 0.01.

In optimization studies, including multi-objective optimiza-
tion problems, the main objective is to find the global Pareto
optimal solutions representing the best possible objective val-
ues. However, in practice, usersmay not always be interested in
finding the global best solutions, particularly if these solutions
are very sensitive to variable perturbations. In such cases, prac-
titioners are interested in finding robust solutions that are less
sensitive to small changes in variables [36].

4. Robust design of the TMD system

In many engineering problems, the mathematical mod-
els of systems considered in analyses and those of actual
ones are different, due to uncertainties in the system. The
performance of the systems could be sensitive to these un-
certainties. Evidently, the uncertainties can affect the design
performance, even though the design has been accomplished
optimally. Therefore, in the optimal design procedure of a sys-
tem, it is required that the uncertainties, whichmay exist in the
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system, are to be taken into account. This consideration can be
performed through the Robust Design Optimization (RDO) pro-
cedure. This method is based on a non-deterministic optimiza-
tion approach, through which the probabilistic changes can be
considered for uncertain parameters, and the stochastic opti-
mal design process can be performed for the system. Therefore,
some probabilistic metrics, which are often called random vari-
ables, are involved in the robust design [37]. In the RDO ap-
proach, the optimally evaluated randomvariables related to the
stochastic performance of the system are expected to be less
sensitive to the random variation of uncertain parameters.

In order to simulate the stochastic behaviour of the uncer-
tain systems, there has been a great amount of research activ-
ity in the field, and the most prominent method used in many
robust design methods is Monte Carlo simulation [38–40].
Monte Carlo Simulation (MCS) is a direct and simple numerical
method, but can be computationally expensive. In this method,
random samples are generated assuming some pre-defined
probabilistic distributions for uncertain parameters. The sys-
tem is then simulated with each of these randomly generated
samples, and the percentage of cases produced in the failure re-
gion, defined by a limit state function, approximately reflects
the probability of failure [39].

Let X be a random variable, then the prevailing model
for uncertainties in stochastic randomness is the Probability
Density Function (PDF), fX (x) or, equivalently, the cumulative
distribution function (CDF), FX (x), where the subscript X refers
to the random variable. This can be shown by [39]:

FX (x) = Pro(X ≤ x) =

 x

−∞

fX (x)dx, (22)

where Pro(.) is the probability that an event (X ≤ x) will occur.
Some statistical moments, such as the first and the second
moments, generally known as the mean value (also referred to
as expected value) denoted by E(X), and the variance denoted
by σ 2(X), respectively, are the most important ones. They can
also be computed by [41]:

E(X) =


∞

−∞

xdFX (x) =


∞

−∞

xfX (x)dx, (23)

and:

σ 2(X) ==


∞

−∞

(x − E(X))2 fX (x)dx. (24)

In the case of discrete sampling, these equations can be readily
represented as [41]:

E(X) ∼=
1
N

N
i=1

xi, (25)

and:

σ 2(X) ∼=
1

N − 1

N
i=1

(xi − E(X))2, (26)

where xi is the ith sample and N is the total number of samples.
In the Robust Design Optimization (RDO), the mean value and
variance of each random variable should be minimized [42].

In order to improve the precision of this method, N should
approach infinity, but it leads to computationally expensive
problems. Therefore, there have been many research activities
on samplingmethods to reduce the number of samples keeping
a high level of accuracy. Alternatively, the quasi-MCS has now
been used in much research, which is known as Hammersley
Figure 2: Typical plan and 3-D frame of the building.

Sequence Sampling (HSS) [39,40]. In the present study, HSS has
been used to generate samples for the probability estimation of
failures.

The goal of RDO is tominimize themean and variance of each
randomvariable. Therefore, themean and its variability for each
random variable should be minimized simultaneously [42].
In this paper, in order to minimize the mean and variance
simultaneously, the objective function for each randomvariable
is considered as:

J =
E(X)

E0
+

σ 2(X)

σ 2
0

, (27)

in which the mean and variance of the random variable are
normalized by the desired mean (E0) and the desired variance
(σ 2

0 ), which can be chosen by the designer.

5. Numerical study

In order to investigate the performance of the proposed
control devices in reducing the responses of building structures
under earthquake excitations, a 12-story steel building, having
plan dimensions of 15 m × 15.5 m and height of 46.3 m,
with residential application, located in the city of Rasht, Iran,
is selected. Lateral resisting systems of the building against
earthquake excitations are a combination of Intermediate
Moment Frames (IMFs) and Eccentrically Braced Frames (EBFs)
in an x-direction; and Special Concentrically Braced Frames
(SCBFs) in a y-direction. This building is modeled as a 3-D frame
to show more realistic behavior of the building and to control
systems in earthquake events. A typical plan and building 3-D
frame are shown in Figure 2.

For evaluating the performance of the proposed TMD con-
trol device and comparing the results, the above building is
analyzed under the application of worldwide earthquake ac-
celerograms. For time history dynamic analysis of the struc-
ture, necessary corrections are performed on the uncorrected
accelerograms, including a band-pass filtering of low- and high-
frequency noises, as well as the instrumental and base-line cor-
rections. All corrected accelerograms are scaled individually, so
that they are representative of accelerograms compatiblewith a
design response spectrum [43]. In the present study, 16 world-
wide strong ground motion accelerograms (presented in Ta-
ble 1), with an effective duration of more than 10 s, have been
selected, according to IBC2006 [43], and used in time history
analyses.

Now, using the state-space equation of the building without
any control system (Eq. (13)), the uncontrolled responses
of the building are calculated under the application of the
earthquake accelerograms given in Table 1. The maximum
uncontrolled responses of the building, including themaximum
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Table 1: Earthquake accelerograms considered in this study.

No. Earthquake Date Effective duration (s) Magnitude
(Ms)

Corrected
PGA (g)

Total duration
(s)

Nearest fault
distance (km)

T L

1 Kocaeli 1999 36.615 37.2039 7.8 0.349 150.405 78.9
2 Chi-Chi 1999 35.876 39.9512 7.62 1.157 121 71.64
3 Landers 1992 35.4932 38.5746 7.4 0.284 120 80.5
4 Duze 1999 23.2598 26.2521 7.3 0.822 60 49.9
5 Cape Mendocino 1992 20.7865 19.847 7.1 1.497 44 44.6
6 Kobe 1995 13.1572 12.8662 6.9 0.694 40.96 26.4
7 Imperial valley 1979 19.4219 17.11 6.9 0.775 40 54.1
8 Garmkhan 1996 14.1873 16.095 6.8 0.08 26.88 –
9 Bam 2003 18.43 18.315 6.7 0.78 58.88 –

10 Northridge 1994 18.4292 19.71 6.7 0.877 34.99 71.1
11 San Fernando 1971 17.765 16.035 6.6 0.136 29.74 81.6
12 Coalinga 1983 21.3806 20.1946 6.5 0.733 40 55.2
13 Karebas 1997 12.9807 14.1065 6.3 0.28 23.04 –
14 Morgan hill 1984 21.2828 19.015 6.1 0.405 36 54.1
15 Zanjiran 1994 19.0637 15.685 6.1 1.07 26.88 –
16 Whittier narrows 1987 12.72 12.56 5.7 0.333 32.06 69.7
Table 2: Stories maximum uncontrolled responses (Dis = displacement (cm), Vel = velocity (m/s) and Acc = acceleration (m/s2)).

Earthquakes Stories of the building
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Kobe
Dis 0.34 1.52 2.27 3.05 3.87 4.74 5.65 6.62 7.62 8.62 9.60 10.63
Vel 0.02 0.07 0.10 0.14 0.18 0.21 0.26 0.30 0.35 0.39 0.44 0.48
Acc 0.08 0.36 0.53 0.72 0.91 1.12 1.33 1.57 1.81 2.05 2.29 2.54

Kocaeli
Dis 0.76 3.40 5.06 6.81 8.64 10.57 12.6 14.78 17.01 19.27 21.47 23.80
Vel 0.04 0.16 0.24 0.32 0.41 0.50 0.59 0.69 0.80 0.90 1.00 1.11
Acc 0.17 0.78 1.16 1.56 1.98 2.42 2.88 3.37 3.86 4.35 4.83 5.33

Chi-Chi
Dis 0.34 1.52 2.26 3.05 3.87 4.74 5.64 6.60 7.58 8.56 9.52 10.53
Vel 0.01 0.06 0.10 0.13 0.16 0.20 0.24 0.28 0.32 0.37 0.41 0.46
Acc 0.08 0.34 0.50 0.68 0.86 1.06 1.26 1.48 1.70 1.92 2.14 2.38

Morgan hill
Dis 0.20 0.90 1.33 1.79 2.28 2.78 3.32 3.89 4.47 5.05 5.63 6.23
Vel 0.01 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.22 0.24 0.27 0.30
Acc 0.09 0.40 0.59 0.80 1.01 1.24 1.48 1.73 1.99 2.26 2.51 2.78

San Fernando
Dis 0.12 0.53 0.79 1.07 1.35 1.66 1.97 2.31 2.66 3.01 3.36 3.72
Vel 0.00 0.02 0.03 0.04 0.06 0.07 0.08 0.10 0.11 0.12 0.14 0.15
Acc 0.04 0.20 0.29 0.39 0.50 0.61 0.72 0.85 0.97 1.10 1.22 1.35

Northridge
Dis 0.32 1.43 2.13 2.87 3.65 4.46 5.31 6.22 7.14 8.06 8.96 9.91
Vel 0.01 0.06 0.08 0.11 0.14 0.18 0.21 0.25 0.28 0.32 0.36 0.40
Acc 0.08 0.35 0.53 0.71 0.90 1.10 1.31 1.54 1.77 2.01 2.23 2.47

Coalinga
Dis 0.54 2.43 3.61 4.86 6.16 7.54 8.98 10.52 12.09 13.66 15.21 16.82
Vel 0.02 0.10 0.15 0.20 0.25 0.31 0.37 0.43 0.50 0.56 0.63 0.69
Acc 0.12 0.54 0.80 1.08 1.36 1.66 1.98 2.32 2.66 3.00 3.34 3.69

Average responses
Dis 0.34 1.52 2.27 3.05 3.87 4.74 5.65 6.62 7.61 8.61 9.58 10.61
Vel 0.01 0.07 0.10 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.42 0.46
Acc 0.09 0.41 0.60 0.81 1.03 1.26 1.51 1.76 2.03 2.29 2.55 2.82
displacement, velocity, and acceleration of each story level,
for 16 earthquake accelerograms of Table 1 are evaluated, the
results of only 7 of which, for brevity, are presented in Table 2.
Moreover, the average values of the maximum responses
corresponding to all 16 accelerograms are also provided in the
last row of Table 2. These results will be used for comparison
with the controlled responses by the proposed control devices
in the next sections.

6. Design of Tuned Mass Damper (TMD) system

The Tuned Mass Damper (TMD) system is a well-accepted
control device used to reduce structural vibrations due to
environmental dynamic loadings, such as earthquake excita-
tions. This system includes a mass, spring and damper; and
can be installed on the roof of the building for reducing the
seismic responses of the building by both changing its dynamic
properties and increasing its damping. In high rise buildings,
the dominant mode is often the first mode of the vibration and,
therefore, the TMD system is tuned to this mode. In this sys-
tem, determination of its main parameters, such as the mass,
stiffness and damping ratio of the system, is very important
and, in the present research study, these parameters are ex-
plained in Eqs. (18)–(20). In this study, in order to optimally
design the TMD system using the multi-objective optimization
procedure, by noting the fact, on the one hand, that the tuning
frequency should be close to the fundamental frequency of the
structure [44], and, fromapractical point of view, that providing
large values of mass and damping ratio is difficult, the variation
domains of itsmain parameters are chosen, as shown in Table 3.
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Figure 3: 2-norm level diagrams of Pareto front of the TMD for Coalinga earthquake: (a) J1; (b) J2; and (c) J3 .
Table 3: Variation domains of the TMD main parameters.

TMD parameters Minimum value Maximum value

m0 1% 3%
β 0.8 1.3
ξTMD 5% 40%

6.1. Optimal design of the TMD system

In order to achieve the best performance of the control de-
vice, the main parameters of the TMD should be optimally
designed. In this study, multi-objective optimization is used to
determine the optimum values of these parameters, using ge-
netic algorithms. For this purpose, three non-commensurable
objective functions, namely, maximum displacement, maxi-
mum velocity and maximum acceleration, of each floor of the
building are considered, which are minimized simultaneously
by multi-objective optimization. These objective functions can
be expressed as the following:

J1 = max
i

[max
t

|Dc
i (t)|/max

t
|Duc

i (t)|],

J2 = max
i

[max
t

|V c
i (t)|/max

t
|V uc

i (t)|],

J3 = max
i

[max
t

|Ac
i (t)|/max

t
|Auc

i (t)|]

(28)

where i = 1, . . . , 12 indicate the number of floors of the
building, and Dc

i (t), Duc
i (t), V c

i (t), V uc
i (t), Ac

i (t) and Auc
i (t) are

the displacement, velocity and acceleration of each floor of the
building in controlled and uncontrolled cases, respectively.

It should be noted that it is impossible to illustrate the trade-
off point when more than two objective functions are consid-
ered. To overcome to this problem, several multi-dimensional
visualization methods are proposed in the literature. One of
these methods, which leads to comprehensive analysis of the
Pareto front and is called the Level Diagramsmethod [45], is used
here to visualize the Pareto fronts of the multi-objective opti-
mization. In this method, each point of the Pareto front must be
normalized to bring it between 0 and 1, based on its minimum
and maximum values, as [45]:

JMi = max Ji, Jmi = min Ji, i = 1, 2, 3

J i =
Ji − Jmi
JMi − Jmi

.
(29)

The distance of each Pareto front point from its origin
can be used for comparison. Here, the Euclidean norm of all
objective functions (∥J∥2 =

3
i=1 J

2
i ) is used for this purpose.

To represent the Pareto front, the Y axis is specified for the
Euclidean norm of all objective functions and the X axis is
specified for each objective function. Therefore, each objective
function has its own graphical representation, whilst the Y axis
of all graphs would be the same.

In this study, multi-objective optimization is used to
evaluate the optimal values of the parameters of the TMD
system for all 16 reference accelerograms, from which, for
brevity, only the Pareto fronts for the Coalinga earthquake are
shown in Figure 3.

It is obvious from Figure 3(a) that the point with the
lowest value of J1 has the high value of objective function, J3
(Figure 3(c)), this issue is true regarding the point with the
lowest value of J3 in comparison to its value for J1, so there
is a conflict between J1 and J3. Likewise, there is confliction
between J2 and J3. As a result, three objective functions are in
conflict with each other. This subject shows the Pareto concept.
Therefore, a selected point with the lowest value of ∥J∥2 is a
good compromise point, because it has the intermediate value
of the three objective functions, so, all results are presented for
this point. The optimized controlled responses of the building
at each story level (corresponding to the point having the
lowest value of ∥J∥2) for 7 selected accelerograms are presented
in Table 4. Moreover, in last row of the table, the average
values of these responses for all 16 reference accelerograms are
given, which can be used for comparison with the uncontrolled
responses.

It can be seen from Table 4 that the average values of
the maximum displacement, velocity and acceleration of the
building’s top story with the TMD system, in comparison with
uncontrolled ones, have been approximately reduced to about
30%, 30%, and 17%, respectively.

Furthermore, the values of the TMD parameters and the
corresponding objective function values for the optimum point
with the lowest value of ∥J∥2 for 16 earthquake excitations
are given in Table 5. It is seen from the table that the average
optimal values of the parameters,m0, β , and ξTMD, are obtained
as 2.93%, 1.02%, and 10.73%, respectively.

Moreover, Figure 4 compares the time histories of the
controlled and uncontrolled responses of the building’s top
story for the Coalinga earthquake and for the optimum point
with the lowest value of ∥J∥2. This figure also shows that
the designed TMD system appropriately controls the building’s
seismic responses.

In the optimal design procedure of the TMD system, the
optimal values of its parameters are being calculated for each
reference accelerogram separately. Since the TMD system is
a kind of passive control device, its parameters are constant
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Table 4: Stories responses with TMD system (Dis = displacement (cm), Vel = velocity (m/s) and Acc = acceleration (m/s2)).

Earthquakes Stories of the building
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Kobe
Dis 0.18 0.81 1.20 1.62 2.05 2.51 2.99 3.51 4.03 4.56 5.07 5.62
Vel 0.01 0.04 0.05 0.07 0.09 0.11 0.13 0.16 0.18 0.20 0.23 0.25
Acc 0.05 0.22 0.33 0.45 0.57 0.70 0.83 0.98 1.12 1.27 1.42 1.57

Kocaeli
Dis 0.55 2.46 3.67 4.94 6.26 7.65 9.11 10.65 12.20 13.73 15.26 16.83
Vel 0.02 0.11 0.16 0.21 0.27 0.33 0.39 0.45 0.52 0.59 0.65 0.72
Acc 0.13 0.56 0.84 1.13 1.42 1.73 2.07 2.42 2.77 3.11 3.45 3.81

Chi-Chi
Dis 0.20 0.88 1.31 1.76 2.23 2.73 3.26 3.81 4.38 4.95 5.51 6.10
Vel 0.01 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.21 0.24 0.27 0.30
Acc 0.07 0.33 0.49 0.66 0.83 1.02 1.21 1.42 1.63 1.83 2.04 2.25

Morgan hill
Dis 0.16 0.70 1.04 1.40 1.78 2.18 2.59 3.03 3.48 3.93 4.37 4.83
Vel 0.01 0.03 0.05 0.07 0.08 0.10 0.12 0.14 0.16 0.19 0.21 0.23
Acc 0.08 0.34 0.50 0.67 0.86 1.05 1.25 1.46 1.68 1.91 2.12 2.35

San Fernando
Dis 0.08 0.38 0.56 0.75 0.96 1.17 1.39 1.63 1.88 2.13 2.37 2.63
Vel 0.00 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.09 0.10 0.11 0.12
Acc 0.04 0.19 0.28 0.38 0.48 0.59 0.70 0.82 0.94 1.06 1.18 1.30

Northridge
Dis 0.24 1.08 1.60 2.16 2.74 3.35 3.99 4.68 5.38 6.08 6.78 7.50
Vel 0.01 0.05 0.07 0.09 0.12 0.15 0.17 0.21 0.24 0.27 0.30 0.33
Acc 0.06 0.29 0.43 0.58 0.73 0.90 1.07 1.25 1.44 1.62 1.81 2.00

Coalinga
Dis 0.28 1.23 1.84 2.47 3.13 3.83 4.56 5.34 6.13 6.93 7.71 8.53
Vel 0.01 0.06 0.09 0.12 0.15 0.19 0.22 0.26 0.30 0.34 0.38 0.42
Acc 0.10 0.43 0.64 0.87 1.10 1.34 1.60 1.87 2.14 2.40 2.67 2.94

Average responses
Dis 0.24 1.09 1.62 2.18 2.77 3.38 4.03 4.72 5.41 6.11 6.81 7.53
Vel 0.01 0.05 0.07 0.09 0.12 0.14 0.17 0.20 0.23 0.26 0.29 0.32
Acc 0.08 0.34 0.50 0.68 0.86 1.05 1.25 1.47 1.69 1.90 2.12 2.34
Table 5: Optimum values of the TMD design parameters for different earthquake excitations.

Earthquakes Design parameters and objective functions
m0 β ξTMD J1 J2 J3 ∥J∥2

Kobe 3 0.82 5.3 0.53 0.51 0.62 0.54
Cape Mendocino 3 1.22 5.1 0.75 0.68 0.63 0.51
Chi-Chi 2.8 0.84 12 0.58 0.65 0.95 0.67
Imperial valley 2.45 0.99 28 0.85 0.95 1.01 0.66
Kocaeli 3 1.05 7.5 0.71 0.65 0.71 0.77
Northridge 2.78 0.95 9 0.76 0.83 0.81 0.72
Landers 3 0.86 10.4 0.83 0.74 0.87 0.76
Morgan hill 3 1.02 6 0.78 0.77 0.85 0.49
San Fernando 3 1.11 9.8 0.71 0.78 0.96 0.82
Coalinga 3 1.05 5.6 0.51 0.61 0.80 0.84
Duze 3 0.89 5.1 0.65 0.70 0.86 0.60
Whittler narrows 3 1.30 15 0.85 0.86 0.97 0.67
Bam 3 1.012 10.41 0.84 0.92 0.90 0.50
Zanjiran 3 1.05 28.8 0.71 0.77 0.96 0.68
Garmkhan 2.92 1.15 8.6 0.80 0.60 0.78 0.68
Karebas 3 0.99 5 0.82 0.75 0.88 0.54
Average 2.93 1.02 10.73 – – – –
during its lifetime. Consequently, the final decision about the
optimal values of the design parameters must be made, based
on the different values obtained for separate accelerograms. For
this purpose, three methods, explained in the following, are
used to obtain the optimal value of any design parameter:
I. The expected mean value calculated for reference accelero-

grams: E(x) =


xi

n , where E(x) is the expected mean value
of parameter x; xi is the optimal value of the parameter ob-
tained for each accelerogram; and n is the number of total
accelerograms.

II. The expectedmean value+ one standard deviation (σ (x)) :

E(x) + 1σ(x).
III. The weighted mean value, for which, the reduction ratio of

controlled and uncontrolled displacements is taken as the
weighting coefficient.
Table 6: TMD design parameters obtained from the proposed three
methods.

Different methods TMD parameters
m0 β ξTMD

First method 2.93 1.02 10.73
Second method 3.08 1.15 17.96
Third method 2.94 1 9.91

The results of optimal values of the TMD design parameters,
calculated by applying these three methods, are shown in
Table 6.

In order to select the final values for the TMD parameters
among these three groups, the building is analyzed with these
TMDs, and the average values of maximum displacement,
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Table 7: Average values of the maximum controlled responses of the building for three proposed methods (Dmax = maximum average displacement (cm),
Vmax = maximum average velocity (m/s) and amax = maximum average acceleration (m/s2)).

Stories of the building
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

The first method TMD parameters
m0 = 2.93%, β = 1.02, ξTMD = 10.73%

Average values
Dmax 0.27 1.22 1.81 2.43 3.08 3.77 4.50 5.27 6.05 6.84 7.62 8.43
Vmax 0.01 0.05 0.08 0.11 0.13 0.16 0.19 0.23 0.26 0.29 0.33 0.36
amax 0.08 0.36 0.53 0.71 0.90 1.10 1.31 1.54 1.76 1.99 2.21 2.44

The second method TMD parameters
m0 = 3.08%, β = 1.15, ξTMD = 17.96%

Average values
Dmax 0.29 1.29 1.91 2.57 3.27 4.00 4.76 5.58 6.41 7.24 8.05 8.91
Vmax 0.01 0.05 0.08 0.11 0.14 0.17 0.20 0.23 0.26 0.30 0.33 0.37
amax 0.08 0.35 0.53 0.71 0.90 1.10 1.31 1.53 1.76 1.98 2.21 2.44

The third method TMD parameters
m0 = 2.94%, β = 1.00, ξTMD = 9.91%

Average values
Dmax 0.27 1.20 1.79 2.40 3.05 3.73 4.44 5.20 5.98 6.76 7.53 8.33
Vmax 0.01 0.05 0.08 0.10 0.13 0.16 0.19 0.23 0.26 0.29 0.32 0.36
amax 0.08 0.36 0.53 0.71 0.91 1.11 1.32 1.54 1.77 1.99 2.22 2.45
Figure 4: Comparison of the controlled and uncontrolled responses of the
building top story for Coalinga earthquake: (a) displacement; (b) velocity; and
(c) acceleration.

velocity and acceleration of each story level for 16 reference
earthquake accelerograms are calculated and presented in
Table 7.

By comparing the results given in the table, it can be con-
cluded that the third method is more appropriate to determine
the TMD design parameters, in which the resulting parame-
ters give more reduction in structural response. Consequently,
the final values of the TMD design parameters are proposed as:
m0 = 2.94%, β = 1, ξTMD = 9.91%.

According to Table 7, the results obtained from the third
method show reduction ratios of about 21.3%, 21% and 12.3%
for maximum values of displacement, velocity and acceleration
of the building’s top story, respectively.
6.2. Robust design of TMD with uncertain parameters

The dynamic behavior of a building is dependent on its
natural frequencies and mode shapes. Moreover, the damp-
ing of the structure plays an important role in reducing the
seismic responses of the building. These two are the most
important parameters of structures that could be affected by
different sources. Therefore, in this study, it is assumed that
the stiffness matrix and the structural damping ratio of the
building may be different from those considered in determin-
istic analyses, and, thus, these parameters should be treated as
uncertain by assuming pre-defined probabilistic distributions.
Consequently, in order to minimize the performance degrada-
tion of the control system from its ideal deterministic position,
the uncertainties that may exist in these parameters must be
taken into account through a stochastic Robust Design Opti-
mization (RDO) approach. The control systemwhich is designed
by the stochastic robust optimization approach is then less sen-
sitive to random variations of uncertain parameters. As men-
tioned earlier, in the stochastic robust design approach, it is
necessary to assume probabilistic distributions for uncertain
parameters.

There aremany probability distribution functions represent-
ing a variety of conditions. In this study, the well known stan-
dard Beta distribution with shape coefficients a = b = 2 has
been used, for which the PDF is expressed as [41]:

f (x|a, b) =
1

B(a, b)
xa−1(1 − x)b−1I(0,1)(x), (30)

where B(.) is the Beta function, and the indicator function,
I(0,1)(x), ensures that only the values of x in the range (0, 1)
have nonzero probability. This Beta distribution function is
shown in Figure 5.

In this research study, in order to perform the stochastic RDO
procedure, the stiffness and damping ratios of the building are
considered uncertain random variables with maximum ±20%
variation around their nominal values. For accomplishment of
this procedure, the building uncertain stiffnessmatrix, [Ku], and
that of the damping ratio, ξu, are defined as the following:

[Ku] = α1 [K ], (31a)

and:

ξu = α2 ξ, (31b)
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Figure 5: Beta distribution function.

Figure 6: Hammersley method of simulation.

where [K ] and ξ are the deterministic values of the stiffness
matrix and damping ratio of the building, respectively, and the
uncertainty coefficients, α1 and α2, with mean values of 1 and
Coefficient Of Variations (COV) of ±20%, are considered to in-
corporate the uncertainties that exist in [K ] and ξ . Coefficients
α1 and α2 follow the probabilistic beta distribution given in
Eq. (30). It is noted that in Eq. (30), the value x varies between
0 and 1, while the uncertainty coefficients, α1 and α2, vary be-
tween 0.8 and 1.2. This incompatibility is accomplished through
the computer programming procedure. In this study, the Ham-
mersley Sequence Sampling (HSS) is used to simulate the prob-
abilistic behavior of the building. The advantage of this method
in comparison with the Monte Carlo method is that, in this
method, a specified patternwith uniform distribution is used to
generate the random numbers between 0 and 1. Therefore, bet-
ter results can be achieved with fewer samples [42]. This sim-
ulation and mapping procedure are depicted in Figure 6, when
uncertain variable, x, varies between 0 and 1, following stan-
dard beta distribution. In this figure, y1 and y2 are the random
numbers uniformly distributed between 0 and 1.

In the present study, to perform the stochastic RDO
procedure using the HSS approach, 50 pairs of uniformly
distributed numbers are simulated between 0 and 1, by which,
50 pairs of random uncertainty coefficients, α1 and α2, are
simulated through a similar mapping procedure, shown in
Figure 6, by considering a beta distribution for these two
variables. Then, using these 50 pairs of coefficients, α1 and
α2, 50 pairs of uncertain stiffness matrix [Ku] and damping
ratio, ξu, are simulated, resulting in 50 buildings with different
stiffness matrices and damping ratios. Now, these 50 buildings
are analyzed under the application of 16 reference earthquake
accelerograms given in Table 1. The average values of the
maximum responses of these buildings, including maximum
displacement, velocity, and acceleration of each story level, for
7 accelerograms, are provided in Table 8. These results will be
used for comparisonwith the controlled responses of the robust
TMD system in the next sections.

In order to stochastic robust design optimization of the TMD
system, three objective functions are defined as follows:

J1 =

E(max
i

[max
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where E0i and σ 2
0i are the desired mean and variance of each

stochastic response, respectively, which can be chosen by the
designer. For example, for the Coalinga earthquake, the values
of the deterministic objective functions for the trade-off point
(the point with the lowest ∥J∥2) are considered as E0i values,
which are, as follows: E01 = 0.51, E02 = 0.61, E03 = 0.8. Fur-
thermore, in order to have the minimum variation, the values
of σ 2

0i are considered as 0.001. In the multi-objective optimiza-
tion process, using theNSGA-II approach, the above three objec-
tive functions should be simultaneously minimized to get the
perfect performance of the control system. Similar to the previ-
ous sections, the Pareto fronts for the Coalinga earthquake are
shown in Figure 7 for the robust TMD system. It can be seen
from the figure that there is a conflict between J1 and J3. Itmeans
that the TMD systemwith lower displacement has higher accel-
eration. The same conflict can be found in Figure 7, between J2
and J3. The squared point in the Pareto front, which has the low-
est value of the 2-norm of the Level Diagram, has the low value
of each objective function. Therefore, it can be considered an
outstanding optimum point. For this optimum point, the mean
and variance of each stochastic response and the values of the
TMD design parameters obtained for the Coalinga earthquake
are given in Table 9.

The average values of the optimized stochastic responses
of the 50 buildings simulated for the robust design of the
TMD system (corresponding to the point having the lowest
value of ∥J∥2) are presented in Table 10 at each story level
for each of the 7 considered accelerograms. Moreover, in the
last row of the tablem the ensemble average values of these
responses for the 16 reference accelerograms are given, which
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Table 8: Average values of the stories maximum responses corresponding to 50 simulated buildings (Dis = displacement (cm), Vel = velocity (m/s) and
Acc = acceleration (m/s2)).

Earthquakes Stories of the building
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Kobe
Dis 0.38 1.70 2.52 3.40 4.31 5.28 6.29 7.37 8.47 9.57 10.65 11.79
Vel 0.02 0.07 0.11 0.14 0.18 0.22 0.27 0.31 0.36 0.41 0.45 0.50
Acc 0.08 0.35 0.52 0.70 0.89 1.09 1.30 1.52 1.76 1.99 2.22 2.47

Cape Mendocino
Dis 0.50 2.23 3.31 4.46 5.66 6.93 8.25 9.67 11.11 12.55 13.97 15.45
Vel 0.02 0.08 0.13 0.17 0.21 0.26 0.31 0.37 0.42 0.48 0.53 0.59
Acc 0.08 0.36 0.54 0.73 0.92 1.12 1.34 1.56 1.79 2.02 2.24 2.47

Whittler Narrows
Dis 0.09 0.41 0.61 0.82 1.04 1.27 1.51 1.77 2.03 2.30 2.55 2.82
Vel 0.00 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.13
Acc 0.06 0.29 0.42 0.57 0.72 0.89 1.06 1.24 1.42 1.60 1.78 1.97

Morgan Hill
Dis 0.22 0.98 1.46 1.97 2.49 3.05 3.63 4.25 4.88 5.51 6.14 6.78
Vel 0.01 0.04 0.07 0.09 0.11 0.14 0.16 0.19 0.22 0.25 0.28 0.30
Acc 0.09 0.39 0.57 0.77 0.98 1.20 1.43 1.68 1.93 2.19 2.44 2.70

San Fernando
Dis 0.12 0.53 0.79 1.07 1.35 1.66 1.97 2.31 2.66 3.00 3.34 3.69
Vel 0.01 0.02 0.03 0.05 0.06 0.07 0.08 0.10 0.11 0.13 0.14 0.16
Acc 0.04 0.20 0.29 0.39 0.50 0.61 0.72 0.84 0.97 1.09 1.22 1.34

Northridge
Dis 0.35 1.57 2.34 3.15 4.00 4.90 5.83 6.83 7.84 8.86 9.86 10.90
Vel 0.01 0.07 0.10 0.13 0.17 0.20 0.24 0.28 0.32 0.37 0.41 0.45
Acc 0.08 0.34 0.50 0.67 0.86 1.05 1.25 1.46 1.68 1.89 2.11 2.33

Coalinga
Dis 0.52 2.30 3.43 4.62 5.85 7.16 8.53 10.00 11.49 13.00 14.47 16.02
Vel 0.02 0.10 0.15 0.20 0.25 0.30 0.36 0.42 0.49 0.55 0.61 0.68
Acc 0.11 0.51 0.75 1.01 1.28 1.57 1.87 2.19 2.51 2.83 3.14 3.47

Average responses
Dis 0.31 1.39 2.07 2.78 3.53 4.32 5.14 6.03 6.93 7.83 8.71 9.64
Vel 0.01 0.06 0.09 0.12 0.15 0.18 0.21 0.25 0.29 0.33 0.36 0.40
Acc 0.08 0.35 0.51 0.69 0.88 1.08 1.28 1.50 1.72 1.94 2.16 2.39
Table 9: Parameters of the selected optimum point obtained for Coalinga earthquake.

m0 β ξTMD E1 σ 2
1 E2 σ 2

2 E3 σ 2
3

2.94% 0.94 5.41% 0.5731 5e−4 0.6226 1.9e−3 0.8158 7e−4
Figure 7: 2-norm level diagrams of Pareto front of the robust TMD for Coalinga earthquake.
can be used for comparison with those of the uncontrolled
ones. It can be seen from the table that the average values
of stochastic displacement, velocity, and acceleration of the
building’s top story, obtained from robust design of the TMD
system, in comparison with those of the uncontrolled ones,
are approximately reduced to about 34.02%, 32.5% and 15.48%,
respectively.

Furthermore, the values of the design parameters of the TMD
device evaluated during the RDO procedure of this system, and
the corresponding objective function values for the optimum
point with the lowest value of ∥J∥2 for 7 earthquake excitations
are presented in Table 11. It is seen from the table that the
stochastic average optimal values of the design parameters,
m0, β and ξTMD, are obtained as 2.87%, 1, and10.2%, respectively,
while, from deterministic analysis, these values are obtained
about 2.93%, 1.02, and 10.73%, respectively.

Moreover, Figure 8 compares the time histories of the robust
controlled and uncontrolled responses of the building’s top
story for the Coalinga earthquake for the optimum point with
the lowest value of ∥J∥2. This figure also shows that the robust
design of the TMDsystem is an appropriate procedure to control
the seismic responses of the building.

The stochastic time history responses of the building’s top
floor for the abovementioned optimum robustly designed TMD
system is shown in Figure 9. In this figure, the dashed lines show
the stochastic responses of the building’s top floor calculated
for 50 simulated sample buildings, and the solid line shows the
mean values of these responses.
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Table 10: Average values of the optimized stochastic responses of the buildings simulated for the robust design of the TMD system (Dis = displacement (cm),
Vel = velocity (m/s) and Acc = acceleration (m/s2)).

Earthquakes Stories of the building
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Kobe
Dis 0.18 0.82 1.21 1.63 2.07 2.54 3.03 3.55 4.08 4.62 5.14 5.69
Vel 0.01 0.04 0.05 0.07 0.09 0.11 0.14 0.16 0.18 0.21 0.23 0.25
Acc 0.06 0.25 0.36 0.49 0.62 0.76 0.91 1.07 1.23 1.40 1.56 1.73

Cape Mendocino
Dis 0.39 1.72 2.56 3.45 4.38 5.36 6.39 7.48 8.59 9.71 10.81 11.95
Vel 0.01 0.06 0.09 0.12 0.15 0.19 0.22 0.26 0.30 0.34 0.38 0.42
Acc 0.06 0.25 0.38 0.51 0.64 0.78 0.93 1.09 1.24 1.39 1.55 1.70

Whittler Narrows
Dis 0.08 0.36 0.54 0.73 0.92 1.13 1.34 1.57 1.80 2.03 2.26 2.50
Vel 0.00 0.02 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
Acc 0.06 0.28 0.42 0.56 0.71 0.87 1.04 1.21 1.39 1.57 1.74 1.93

Morgan Hill
Dis 0.17 0.76 1.13 1.51 1.92 2.34 2.79 3.27 3.75 4.24 4.72 5.22
Vel 0.01 0.03 0.05 0.07 0.08 0.10 0.12 0.14 0.16 0.19 0.21 0.23
Acc 0.08 0.34 0.50 0.67 0.85 1.05 1.25 1.46 1.68 1.90 2.12 2.35

San Fernando
Dis 0.09 0.40 0.59 0.80 1.02 1.24 1.48 1.73 1.99 2.25 2.51 2.78
Vel 0.00 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.13
Acc 0.04 0.20 0.29 0.39 0.50 0.61 0.72 0.85 0.97 1.10 1.22 1.35

Northridge
Dis 0.22 0.98 1.46 1.96 2.49 3.05 3.64 4.27 4.92 5.57 6.22 6.90
Vel 0.01 0.05 0.07 0.10 0.12 0.15 0.18 0.21 0.24 0.27 0.30 0.33
Acc 0.07 0.29 0.43 0.59 0.74 0.91 1.08 1.27 1.46 1.65 1.84 2.03

Coalinga
Dis 0.31 1.38 2.05 2.76 3.50 4.28 5.09 5.96 6.84 7.71 8.58 9.48
Vel 0.01 0.06 0.09 0.13 0.16 0.19 0.23 0.27 0.31 0.35 0.39 0.43
Acc 0.10 0.44 0.66 0.89 1.13 1.38 1.64 1.92 2.20 2.48 2.75 3.03

Average responses
Dis 0.21 0.92 1.36 1.83 2.33 2.85 3.39 3.98 4.57 5.16 5.75 6.36
Vel 0.01 0.04 0.06 0.08 0.10 0.12 0.15 0.17 0.19 0.22 0.25 0.27
Acc 0.07 0.29 0.43 0.59 0.74 0.91 1.08 1.27 1.45 1.64 1.83 2.02
Table 11: Stochastic optimum values of the TMD design parameters for different earthquake excitations.

Earthquakes The values of design paramteres and objective functions
m0 β ξTMD J1 J2 J3 ∥J∥2

Kobe 2.98 0.80 5.53 1.61 1.16 1.41 0.35
Cape Mendocino 2.72 1.20 5.94 1.26 1.07 1.29 0.48
Northridge 2.65 0.87 15.56 1.10 1.09 1.13 0.62
Morgan Hill 2.97 1.05 8.91 1.27 1.71 1.32 0.55
San Fernando 2.98 0.87 7.24 1.22 1.22 1.08 0.64
Coalinga 2.94 0.94 5.41 1.14 1.31 1.18 0.19
Whittler Narrows 2.83 1.27 22.8 1.54 1.73 1.31 0.40
Average 2.87 1.00 10.2 – – – –
Table 12: Robust TMDdesign parameters obtained from the proposed three
averaging methods.

TMD parameters m0 β ξTMD

First method 2.87 1.00 10.20
Second method 2.99 1.17 16.30
Third method 2.83 0.932 10.03

It is evident from Figure 9 that all the individual stochastic
responses corresponding to 50 sample buildings and theirmean
values, are very close to each other. It means that the robust
design of the control system significantly reduces the effect
of uncertainties existing in the structure, leading to a control
system with less sensitivity to the uncertainties of the system.

Here, also, the same three averaging methods explained
earlier are used to determine the final values of the robust
TMD design parameters. The results obtained for TMD design
parameters in this way are shown in Table 12. In order to select
the final values for the robust TMD design parameters among
these three groups, the building is analyzed by considering
these values for TMD parameters, and the average values
of the maximum displacement, velocity, and acceleration of
each story level for 16 reference earthquake accelerograms are
calculated and presented in Table 13. By comparing the results
given in the table, it can be concluded that the third method
is more appropriate to determine the design parameters of the
robust TMD system, in which the resulting parameters give
more reduction in structural responses. Consequently, the final
values of the design parameters for the robust TMD system
are proposed as: m0 = 2.83%, β = 0.932, ξTMD = 10.03%.
According to Table 13, the results obtained from the third
method show reduction ratios about 27.6%, 25% and 12.13%
onmaximum values of displacement, velocity, and acceleration
of the building’s top story, respectively, while these reduction
ratios, obtained from deterministic analysis, are about 21.13%,
21%, and 12.3%, respectively.

In order to compare the results of deterministic and robust
design optimization methods, the 50 sample buildings simu-
lated in previous sections are analyzed by considering the op-
timal values of the TMD design parameters (m0, β, and ξTMD)
obtained from these two methods. For this purpose, 50 sample
buildings are analyzed by considering the optimal TMD system
for the trade-off point (the point with the minimum value of
∥J∥2) in each earthquake excitation, and the results of analysis
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Table 13: Average values of the maximum stochastic responses of the building for three methods (Dmax = maximum average displacement (cm), Vmax =

maximum average velocity (m/s) and amax = maximum average acceleration (m/s2)).

Stories of the building
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

The first method m0 = 2.87%, β = 1.00, ξTMD = 10.2%

Average values
Dmax 0.23 1.02 1.51 2.04 2.58 3.16 3.76 4.41 5.07 5.72 6.37 7.05
Vmax 0.01 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.21 0.24 0.27 0.30
amax 0.07 0.30 0.45 0.61 0.77 0.94 1.12 1.31 1.50 1.70 1.89 2.08

The second method m0 = 2.99%, β = 1.17, ξTMD = 16.3%

Average values
Dmax 0.25 1.14 1.69 2.27 2.88 3.53 4.20 4.92 5.66 6.40 7.12 7.88
Vmax 0.01 0.05 0.07 0.09 0.12 0.15 0.17 0.20 0.23 0.26 0.29 0.32
amax 0.07 0.30 0.45 0.60 0.76 0.93 1.11 1.30 1.49 1.68 1.87 2.06

The third method m0 = 2.83%, β = 0.932, ξTMD = 10.03%

Average values
Dmax 0.23 1.01 1.50 2.02 2.56 3.13 3.73 4.37 5.02 5.67 6.31 6.98
Vmax 0.01 0.04 0.06 0.09 0.11 0.13 0.16 0.18 0.21 0.24 0.27 0.30
amax 0.07 0.31 0.45 0.61 0.78 0.95 1.13 1.32 1.52 1.71 1.90 2.10
Figure 8: Comparison of the robust controlled and uncontrolled responses of
the building top story for Coalinga earthquake: (a) displacement; (b) velocity;
and (c) acceleration.
of these 50 samples are taken as the final results for each earth-
quake excitation. The PDFs of normalized maximum responses
of the buildings are shown in Figure 10 for the final optimal TMD
design parameters, in the case of robust design, and that of the
deterministic design of the TMD system for the Coalinga earth-
quake. It is clear from the figure that with the robust design of
the TMD system, the variation of each objective function from
its mean value is very low in comparison with that of the deter-
ministic design, indicating that the robust design is more reli-
able than the deterministic one.

Moreover, to show the supremacy of the robust design, the
variances of the top story responses of the simulated buildings
for trade-off points of the robust and deterministic design are
shown in Figure 11. It is seen from the figure that the stochastic
behavior of the uncertain system can have less variation, if, and
only if, the system is designed robustly. Finally, from the above
discussion, it is obvious that in order to achieve a safe design,
compatible with variations in the parameters and conditions of
the system, a robust design would be necessary.

7. Conclusions

In this study, the multi-objective optimization method,
using the NSGA-II approach, has been performed to optimally
design the TMD control system. Multi-objective optimization
of this system led to the discovery of some important trade-
offs between the objective functions. Based on the multi-
objective GAs of this work, the point which has the lowest
value of the Euclidean norm of all objective functions is used
Figure 9: Stochastic response of the top floor for the trade-off point for Coalinga earthquake (dashed lines correspond to each sample response, and the solid line is
the mean value of the responses).
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Figure 10: The PDFs of each objective function for Coalinga earthquake.
Figure 11: Variance of the stochastic response of the building top floor for Coalinga earthquake.
to compare the application of this device. Moreover, in order
to take into account the effects of uncertainties that may exist
in the building, a Robust Design Optimization (RDO) procedure
is performed. For this purpose, the building stiffness matrix
and damping ratio are considered as uncertain parameters.
In order to generate sample buildings, the Hammersley
Sequence Sampling (HSS) procedure is used. The numerical
studies performed in this research work lead to the following
conclusions:

1. By performing the deterministic multi-objective optimiza-
tion procedure, the optimum values of the TMD design pa-
rameters are obtained asm0 = 2.94%, β = 1, ξTMD = 9.91%.
The results evaluated from simulation show reduction ratios
about 21.3%, 21% and 12.3% on the maximum displacement,
velocity, and acceleration of the sample building’s top story,
respectively.

2. By performing the Robust Design Optimization (RDO) proce-
dure, the optimum values of the TMD design parameters are
obtained as m0 = 2.83%, β = 0.932, ξTMD = 10.03%. Ap-
plying these values shows reduction ratios about 27.6%, 25%
and 12.13% on themaximumdisplacement, velocity, and ac-
celeration of the building’s top story, respectively.

3. It is found thatwith the robust design of the TMD system, the
variation of each objective function from its mean value is
very low in comparisonwith that of the deterministic design,
indicating that the robust design is more reliable than the
deterministic one.

4. The conflict existing between the objective functions allows
the designer to choose the proper point for designing, by
establishing a compromise between the objective functions.
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